I-Corps: Embedded Machine Listening for Smart Acoustic Monitoring
I-Corps:用于智能声学监控的嵌入式机器监听
基本信息
- 批准号:1759592
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-11-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the use of embedded machine listening as a low-cost, turnkey solution for early detection of machinery malfunction and improve predictive maintenance. In manufacturing, sound-based condition monitoring coupled with data-driven maintenance can help significantly reduce unscheduled work stoppages, faulty products and waste of raw materials. Building management systems can be augmented by integrating real-time condition updates for critical machinery such as HVAC units, elevators, boilers and pumps, minimizing disruption for managers and users of those services. This technology is flexible, accurate and data-driven, potentially providing a low barrier to adoption for prospective customers and adaptability to various markets. Beyond predictive maintenance, applications include noise level monitoring for ensuring compliance in workplaces and airports, home and building security, early alert for traffic accidents, bio-acoustic monitoring of animal species, and outdoor noise monitoring at scale for improved enforcement in smart cities.This I-Corps project further develops research at the intersection of artificial intelligence and the internet of things. The technology consists of a calibrated and highly accurate acoustic sensor with embedded sound recognition AI based on deep learning. Sound conveys critical information about the environment that often cannot be measured by other means. In manufacturing, early stage machinery malfunction can be indicated by abnormal acoustic emissions. In smart homes and buildings, sound can be monitored for signs of alarm, distress or compliance. Sound sensing is omnidirectional and robust to occlusion and contextual variables such as lightning conditions at different times of the day. Many existing solutions cannot identify different types of sounds or complex acoustic patterns, making them unsuited for these applications. This solution is both low cost and capable of identifying events and sources at the network edge, thus eliminating the need for sensitive audio information to be transmitted.
I-Corps项目的更广泛的影响/商业潜力是使用嵌入式机器监听作为一种低成本的、可交付的解决方案,用于早期检测机器故障并改善预测性维护。在制造业中,基于声音的状态监测与数据驱动的维护相结合,可以显著减少计划外停工、产品故障和原材料浪费。通过集成HVAC设备、电梯、锅炉和泵等关键机械的实时状态更新,可以增强建筑物管理系统,最大限度地减少对这些服务的管理人员和用户的干扰。该技术灵活、准确、数据驱动,为潜在客户提供了较低的采用门槛,并可适应各种市场。除了预测性维护,应用还包括噪音水平监测,以确保工作场所和机场的合规性,家庭和建筑安全,交通事故的早期预警,动物物种的生物声学监测,以及大规模的室外噪音监测,以改善智能城市的执法。这个I-Corps项目进一步发展了人工智能和物联网的交叉研究。该技术由经过校准的高精度声学传感器和基于深度学习的嵌入式声音识别人工智能组成。声音传达了关于环境的重要信息,而这些信息通常无法通过其他手段来测量。在制造业中,早期机械故障可以通过异常声发射来指示。在智能家居和建筑中,可以监控声音,以识别警报、遇险或合规的迹象。声音传感是全方位的,对遮挡和上下文变量(如一天中不同时间的闪电条件)具有鲁棒性。许多现有的解决方案不能识别不同类型的声音或复杂的声学模式,使它们不适合这些应用。该解决方案成本低,并且能够识别网络边缘的事件和源,从而消除了传输敏感音频信息的需要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Bello其他文献
EVALUATING POST-PROCEDURAL EFFECTS OF THE MEDTRONIC MICRA™ PACEMAKER ON CARDIAC FUNCTION
- DOI:
10.1016/s0735-1097(24)02193-4 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Thomas Lee;Afif Hossain;Vinesh Jonnala;Navid Radfar;Yong Lee;Felix Afriyie;Juan Bello;Shriya Patel;Emad F. Aziz - 通讯作者:
Emad F. Aziz
THE MIGHTY MITRACLIP: A CASE OF CARDIOGENIC SHOCK SECONDARY TO SEVERE MITRAL REGURGITATION FROM FLAIL LEAFLET SUCCESSFULLY MANAGED BY MITRACLIP
- DOI:
10.1016/s0735-1097(24)05843-1 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Juan Bello;Aysha Hussain;Paul Y. Lee;Kandarp Suthar;Perry Wengrofsky;Chunguang Chen - 通讯作者:
Chunguang Chen
Safety of routine protamine in the reversal of heparin in percutaneous coronary intervention: A systematic review and meta-analysis
常规鱼精蛋白在经皮冠状动脉介入治疗中逆转肝素的安全性:系统评价和荟萃分析
- DOI:
10.1016/j.ijcard.2023.131168 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:3.200
- 作者:
Paul Y. Lee;Juan Bello;Catherine Ye;Shruti Varadarajan;Afif Hossain;Saahil Jumkhawala;Abhishek Sharma;Joseph Allencherril - 通讯作者:
Joseph Allencherril
Trastornos del control de los impulsos y punding en la enfermedad de Parkinson: la necesidad de una entrevista estructurada ☆
Trastornos del control de los impulsos y punding en la enfermedad de Parkinson: la necesidad de una entrevista estructurada ☆
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
A. Ávila;X. Cardona;Juan Bello;P. Maho;F. Sastre;M. Martín - 通讯作者:
M. Martín
PE-EK A BOO: WHEN PE IS NOT REALLY PE - AORTIC DISSECTION WITH HEMATOMA MASQUERADING AS PULMONARY EMBOLISM
- DOI:
10.1016/s0735-1097(24)06116-3 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
Juan Bello;Yong Lee;Navid Radfar;Afif Hossain;Kirsys Guerrero;Jeffrey S. Lander - 通讯作者:
Jeffrey S. Lander
Juan Bello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Bello', 18)}}的其他基金
III: Medium: Spatial Sound Scene Description
III:媒介:空间声音场景描述
- 批准号:
1955357 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
PFI-TT: Acoustic Continuous Condition Monitoring of Manufacturing Machinery
PFI-TT:制造机械的声学连续状态监测
- 批准号:
1827523 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: IA: BirdVox: Automating Acoustic Monitoring of Migrating Bird Species
BIGDATA:协作研究:IA:BirdVox:迁徙鸟类的自动声学监测
- 批准号:
1633259 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CPS: Frontier: SONYC: A Cyber-Physical System for Monitoring, Analysis and Mitigation of Urban Noise Pollution
CPS:前沿:SONYC:用于监测、分析和缓解城市噪声污染的网络物理系统
- 批准号:
1544753 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
CAREER: Analyzing the Sequential Structure of Music Audio
职业:分析音乐音频的顺序结构
- 批准号:
0844654 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似国自然基金
Embedded Internet体系结构及应用研究
- 批准号:69873007
- 批准年份:1998
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Transparency and super-resolution of river interiors using a physics-embedded machine-learning (PINNs)
使用物理嵌入式机器学习 (PINN) 实现河流内部的透明度和超分辨率
- 批准号:
23K17807 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: STEM Learning Embedded in a Machine-in-the-Loop Collaborative Story Writing Game
协作研究:嵌入机器在环协作故事写作游戏中的 STEM 学习
- 批准号:
2202506 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: STEM Learning Embedded in a Machine-in-the-LoopCollaborative Story Writing Game
协作研究:嵌入机器在环协作故事写作游戏中的 STEM 学习
- 批准号:
2202496 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
A Kernelnalized learning method as a model of insect-brain and its application for an incremental learning algorithm for embedded machine learning systems
作为昆虫大脑模型的内核化学习方法及其在嵌入式机器学习系统增量学习算法中的应用
- 批准号:
22K12176 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine Learning for Improving Embedded System Attacks
用于改善嵌入式系统攻击的机器学习
- 批准号:
RGPIN-2020-06175 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning for Improving Embedded System Attacks
用于改善嵌入式系统攻击的机器学习
- 批准号:
RGPIN-2020-06175 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Construction of quality model for embedded software systems including machine learning computation
包括机器学习计算在内的嵌入式软件系统质量模型的构建
- 批准号:
21K04560 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine Learning for Improving Embedded System Attacks
用于改善嵌入式系统攻击的机器学习
- 批准号:
RGPIN-2020-06175 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Energy-Efficient Machine Learning for Mobile/Embedded Systems
适用于移动/嵌入式系统的节能机器学习
- 批准号:
2480917 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Studentship
Machine Learning for Improving Embedded System Attacks
用于改善嵌入式系统攻击的机器学习
- 批准号:
DGECR-2020-00445 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Discovery Launch Supplement