III: Medium: Spatial Sound Scene Description

III:媒介:空间声音场景描述

基本信息

  • 批准号:
    1955357
  • 负责人:
  • 金额:
    $ 99.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Sound is rich with information about the surrounding environment. If you stand on a city sidewalk with your eyes closed and listen, you will hear the sounds of events happening around you: birds chirping, squirrels scurrying, people talking, doors opening, an ambulance speeding, a truck idling. In addition, you will also likely be able to perceive the location of each sound source, where it’s going, and how fast it’s moving. This project will build innovative technologies to allow computers to extract this rich information out of sound. By not only identifying which sound sources are present but also estimating the spatial location and movement of each sound source, sound sensing technology will be able to better describe our environments with microphone-enabled everyday devices, e.g. smartphones, headphones, smart speakers, hearing-aids, home camera, and mixed-reality headsets. For hearing impaired individuals, the developed technologies have the potential to alert them to dangerous situations in urban or domestic environments. For city agencies, acoustic sensors will be able to more accurately quantify traffic, construction, and other activities in urban environments. For ecologists, this technology can help them more accurately monitor and study wildlife. In addition, this information complements what computer vision can sense, as sound can include information about events that are not easily visible, such as sources that are small (e.g., insects), far away (e.g., a distant jackhammer), or simply hidden behind another object (e.g., an incoming ambulance around a building's corner). This project also includes outreach activities involving over 100 public school students and teachers, as well as the training and mentoring of postdoctoral, graduate and undergraduate students. This project will develop computational models for spatial sound scene description: that is, estimating the class, spatial location, direction and speed of movement of living beings and objects in real environments by the sounds they make. The investigators aim for their solutions to be robust across a wide range of sound scenes and sensing conditions: noisy, sparse, natural, urban, indoors, outdoors, with varying compositions of sources, with unknown sources, with moving sources, with moving sensors, etc. While current approaches show promise, they are still far from robust in real-world conditions and thus unable to support any of the above scenarios. These shortcomings stem from important data issues such as a lack of spatially annotated real-world audio data, and an over-reliance on poor quality, unrealistic synthesized data; as well as methodological issues such as excessive dependence on supervised learning and a failure to capture the structure of the solution space. This project plans an approach mixing innovative data collection strategies with cutting-edge machine learning solutions. First, it advances a novel framework for the probabilistic synthesis of soundscape datasets using physical and generative models. The goal is to substantially increase the amount, realism and diversity of strongly-labeled spatial audio data. Second, it collects and annotates new datasets of real sound scenes via a combination of high-quality field recordings, crowdsourcing, novel VR/AR multimodal annotation strategies and large-scale annotation by citizen scientists. Third, it puts forward novel deep self-supervised representation learning strategies trained on vast quantities of unlabeled audio data. Fourth, these representation modules are paired with hierarchical predictive models, where the top/bottom levels of the hierarchy correspond to coarser/finer levels of scene description. Finally, the project includes collaborations with three industrial partners to explore applications enabled by the proposed solutions. The project will result in novel methods and open source software libraries for spatial sound scene generation, annotation, representation learning, and sound event detection/localization/tracking; and new open datasets of spatial audio recordings, spatial sound scene annotations, synthesized isolated sounds, and synthesized spatial soundscapes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
声音包含着丰富的关于周围环境的信息。如果你站在城市的人行道上,闭上眼睛倾听,你会听到周围发生的事情的声音:鸟儿鸣叫、松鼠奔跑、人们说话、门打开、救护车超速、卡车空转。此外,您还可能能够感知每个声源的位置,它的去向以及移动速度。该项目将建立创新技术,使计算机能够从声音中提取丰富的信息。通过不仅识别哪些声源存在,而且还估计每个声源的空间位置和移动,声音感测技术将能够更好地描述我们的环境与麦克风启用的日常设备,例如智能手机,耳机,智能扬声器,助听器,家用摄像头和混合现实耳机。对于听力受损的个人,开发的技术有可能提醒他们注意城市或家庭环境中的危险情况。对于城市机构来说,声学传感器将能够更准确地量化城市环境中的交通、建筑和其他活动。对于生态学家来说,这项技术可以帮助他们更准确地监测和研究野生动物。此外,该信息补充了计算机视觉可以感测的内容,因为声音可以包括关于不容易可见的事件的信息,例如小的源(例如,昆虫),远离(例如,远处的手提钻),或者简单地隐藏在另一物体后面(例如,建筑物拐角处有一辆救护车驶来)。该项目还包括涉及100多名公立学校学生和教师的外联活动,以及对博士后、研究生和本科生的培训和辅导。本项目将开发空间声音场景描述的计算模型:即通过生物和物体发出的声音估计它们在真实的环境中的类别、空间位置、方向和运动速度。研究人员的目标是他们的解决方案在广泛的声音场景和传感条件下是强大的:嘈杂的,稀疏的,自然的,城市的,室内的,室外的,具有不同组成的来源,未知的来源,与移动源,与移动传感器等,虽然目前的方法显示的承诺,他们仍然远远不够强大,在现实世界的条件下,因此无法支持任何上述情况。这些缺点源于重要的数据问题,例如缺乏空间注释的真实世界音频数据,以及过度依赖质量差,不切实际的合成数据;以及方法问题,例如过度依赖监督学习和未能捕获解决方案空间的结构。该项目计划将创新的数据收集策略与尖端的机器学习解决方案相结合。首先,它提出了一个新的框架,使用物理和生成模型的概率合成的声景数据集。我们的目标是大幅增加强标记空间音频数据的数量,真实性和多样性。其次,通过高质量的现场录音、众包、新颖的VR/AR多模态注释策略和公民科学家的大规模注释相结合,收集和注释真实的声音场景的新数据集。第三,它提出了一种新的深度自监督表示学习策略,在大量未标记的音频数据上进行训练。第四,这些表示模块与分层预测模型配对,其中分层结构的顶部/底部级别对应于场景描述的较粗/较细级别。最后,该项目包括与三个行业合作伙伴的合作,以探索由所提出的解决方案支持的应用程序。该项目将产生用于空间声音场景生成、注释、表示学习和声音事件检测/定位/跟踪的新方法和开放源码软件库;以及空间音频记录、空间声音场景注释、合成孤立声音该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wav2CLIP: Learning Robust Audio Representations from Clip
Few-Shot Musical Source Separation
少镜头音乐源分离
  • DOI:
    10.1109/icassp43922.2022.9747536
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Yu;Stoller, Daniel;Bittner, Rachel M.;Pablo Bello, Juan
  • 通讯作者:
    Pablo Bello, Juan
Sound Event Detection in Urban Audio with Single and Multi-Rate Pcen
使用单速率和多速率 Pcen 进行城市音频中的声音事件检测
  • DOI:
    10.1109/icassp39728.2021.9414697
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ick, Christopher;McFee, Brian
  • 通讯作者:
    McFee, Brian
Micarraylib: Software for the Reproducible Aggregation, Standardization, and Signal Processing of Microphone Array Datasets. Detection and Classification of Acoustic Scenes and Events
Micarraylib:用于麦克风阵列数据集的可重复聚合、标准化和信号处理的软件。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roman, I. R.;Bello, J.P.
  • 通讯作者:
    Bello, J.P.
Analyzing the Effect of Equal-Angle Spatial Discretization on Sound Event Localization and Detection
分析等角空间离散对声音事件定位和检测的影响
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan Bello其他文献

EVALUATING POST-PROCEDURAL EFFECTS OF THE MEDTRONIC MICRA™ PACEMAKER ON CARDIAC FUNCTION
  • DOI:
    10.1016/s0735-1097(24)02193-4
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Lee;Afif Hossain;Vinesh Jonnala;Navid Radfar;Yong Lee;Felix Afriyie;Juan Bello;Shriya Patel;Emad F. Aziz
  • 通讯作者:
    Emad F. Aziz
THE MIGHTY MITRACLIP: A CASE OF CARDIOGENIC SHOCK SECONDARY TO SEVERE MITRAL REGURGITATION FROM FLAIL LEAFLET SUCCESSFULLY MANAGED BY MITRACLIP
  • DOI:
    10.1016/s0735-1097(24)05843-1
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Juan Bello;Aysha Hussain;Paul Y. Lee;Kandarp Suthar;Perry Wengrofsky;Chunguang Chen
  • 通讯作者:
    Chunguang Chen
Safety of routine protamine in the reversal of heparin in percutaneous coronary intervention: A systematic review and meta-analysis
常规鱼精蛋白在经皮冠状动脉介入治疗中逆转肝素的安全性:系统评价和荟萃分析
  • DOI:
    10.1016/j.ijcard.2023.131168
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Paul Y. Lee;Juan Bello;Catherine Ye;Shruti Varadarajan;Afif Hossain;Saahil Jumkhawala;Abhishek Sharma;Joseph Allencherril
  • 通讯作者:
    Joseph Allencherril
Trastornos del control de los impulsos y punding en la enfermedad de Parkinson: la necesidad de una entrevista estructurada ☆
Trastornos del control de los impulsos y punding en la enfermedad de Parkinson: la necesidad de una entrevista estructurada ☆
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ávila;X. Cardona;Juan Bello;P. Maho;F. Sastre;M. Martín
  • 通讯作者:
    M. Martín
PE-EK A BOO: WHEN PE IS NOT REALLY PE - AORTIC DISSECTION WITH HEMATOMA MASQUERADING AS PULMONARY EMBOLISM
  • DOI:
    10.1016/s0735-1097(24)06116-3
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Juan Bello;Yong Lee;Navid Radfar;Afif Hossain;Kirsys Guerrero;Jeffrey S. Lander
  • 通讯作者:
    Jeffrey S. Lander

Juan Bello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan Bello', 18)}}的其他基金

PFI-TT: Acoustic Continuous Condition Monitoring of Manufacturing Machinery
PFI-TT:制造机械的声学连续状态监测
  • 批准号:
    1827523
  • 财政年份:
    2018
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
I-Corps: Embedded Machine Listening for Smart Acoustic Monitoring
I-Corps:用于智能声学监控的嵌入式机器监听
  • 批准号:
    1759592
  • 财政年份:
    2017
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: IA: BirdVox: Automating Acoustic Monitoring of Migrating Bird Species
BIGDATA:协作研究:IA:BirdVox:迁徙鸟类的自动声学监测
  • 批准号:
    1633259
  • 财政年份:
    2016
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
CPS: Frontier: SONYC: A Cyber-Physical System for Monitoring, Analysis and Mitigation of Urban Noise Pollution
CPS:前沿:SONYC:用于监测、分析和缓解城市噪声污染的网络物理系统
  • 批准号:
    1544753
  • 财政年份:
    2016
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
CAREER: Analyzing the Sequential Structure of Music Audio
职业:分析音乐音频的顺序结构
  • 批准号:
    0844654
  • 财政年份:
    2009
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant

相似海外基金

Evaluation of spatial reconstruction from short- and medium-term perspectives following the Great East Japan Earthquake
东日本大地震中短期空间重建评价
  • 批准号:
    23H01574
  • 财政年份:
    2023
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: SHF: Medium: Spatial Multi-Tenant Neural Acceleration for Next Generation Datacenters
合作研究:SHF:中:下一代数据中心的空间多租户神经加速
  • 批准号:
    2107244
  • 财政年份:
    2021
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Spatial Multi-Tenant Neural Acceleration for Next Generation Datacenters
合作研究:SHF:中:下一代数据中心的空间多租户神经加速
  • 批准号:
    2107598
  • 财政年份:
    2021
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
CNS Core: Medium: Bringing the Spatial Web to Life
CNS 核心:Medium:将空间网络带入生活
  • 批准号:
    1956095
  • 财政年份:
    2020
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
III: Medium: Investigating Spatial-Temporal Informatics for Transportation Science
III:媒介:研究交通科学的时空信息学
  • 批准号:
    1901099
  • 财政年份:
    2019
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Through synapses to spatial learning--a topological approach
RI:媒介:协作研究:通过突触进行空间学习——一种拓扑方法
  • 批准号:
    1901338
  • 财政年份:
    2019
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
CAREER: Breakthrough Display Technology as a New Medium for Spatial Thinking in STEM
职业:突破性的显示技术作为 STEM 空间思维的新媒介
  • 批准号:
    1846477
  • 财政年份:
    2019
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
Safe limit snow loads of small and medium-sized spatial structures subjected to earthquake motions and securing function for evacuation facilities during snow season
地震作用下中小型空间结构雪荷载的安全限制及雪季疏散设施的固定功能
  • 批准号:
    18K04427
  • 财政年份:
    2018
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RI: Medium: Collaborative Research: Experimental and Robotics Investigations of Multi-Scale Spatial Memory Consolidation in Complex Environments
RI:媒介:协作研究:复杂环境中多尺度空间记忆整合的实验和机器人研究
  • 批准号:
    1703340
  • 财政年份:
    2017
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
Creating a Chronotopic Ground for the Mapping of Literary Texts: Innovative Data Visualisation and Spatial Interpretation in the Digital Medium
为文学文本的映射创造时间主题基础:数字媒体中的创新数据可视化和空间解释
  • 批准号:
    AH/P00895X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了