BIGDATA: Collaborative Research: IA: BirdVox: Automating Acoustic Monitoring of Migrating Bird Species

BIGDATA:协作研究:IA:BirdVox:迁徙鸟类的自动声学监测

基本信息

  • 批准号:
    1633259
  • 负责人:
  • 金额:
    $ 61.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Current bioacoustic monitoring of natural environments requires processing by humans to extract information content from recordings. Thus human processing creates a fundamental bottleneck in which data collection far outpaces capabilities to extract relevant and desired information. Bioacoustic research on automatic species classification in natural environments can be broadly divided into two groups: distinguishing a predefined set of known species from audio clips and extracting species as events that occur in a continuous audio stream. Both classification techniques have their specific problems--many of the data used distinguishing predefined species are recorded under "studio" conditions and not extensible to natural conditions, while processing of continuous audio streams generate many false positives. To overcome these challenges we will take a multi-tiered approach: Analyzing a data set consisting of full-night recordings from 10 recording units over 100 nights. Building a web-enabled software to engage citizen scientists to identify the flight calls, providing us with a large and extensive model training dataset. Developing novel convolutional deep-learning networks, which are well suited for analysis of complex auditory scenes. Visualizing patterns detected and classified flight calls in space and time to produce novel information about the bird migration. Comparing model-generated acoustic data with radar, video, and direct visual citizen science datasets to produce the most comprehensive accounts of nocturnal bird migration possible. The combination of domain knowledge in bird vocalizations, engaging citizen scientists to allow development of large well annotated training datasets, and taking a novel deep-learning approach, will finally resolve the machine classification of acoustic signals in natural environments.
当前对自然环境的生物声学监测需要人类处理以从记录中提取信息内容。因此,人类的处理创造了一个根本的瓶颈,其中数据收集远远超过了提取相关和所需信息的能力。在自然环境中自动物种分类的生物声学研究可以大致分为两组:从音频剪辑中区分一组预定义的已知物种和提取物种作为发生在连续音频流中的事件。这两种分类技术都有其特定的问题--许多用于区分预定义物种的数据是在“工作室”条件下记录的,不能扩展到自然条件,而连续音频流的处理会产生许多误报。为了克服这些挑战,我们将采取多层次的方法:分析由10个记录单元在100个夜晚的整晚记录组成的数据集。构建一个支持网络的软件,让公民科学家来识别航班呼叫,为我们提供一个庞大而广泛的模型训练数据集。 开发新型卷积深度学习网络,非常适合分析复杂的听觉场景。 可视化模式检测和分类飞行呼叫的空间和时间,以产生新的信息有关的鸟类迁徙。 将模型生成的声学数据与雷达,视频和直接视觉公民科学数据集进行比较,以产生最全面的夜间鸟类迁徙数据。 结合鸟类发声的领域知识,让公民科学家参与开发大型注释良好的训练数据集,并采取新的深度学习方法,最终将解决自然环境中声学信号的机器分类问题。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Pooling Operators for Weakly Labeled Sound Event Detection
Scaper: A library for soundscape synthesis and augmentation
Hybrid scattering-LSTM networks for automated detection of sleep arousals
  • DOI:
    10.1088/1361-6579/ab2664
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Warrick, Philip A.;Lostanlen, Vincent;Homsi, Masun Nabhan
  • 通讯作者:
    Homsi, Masun Nabhan
Matching human vocal imitations to birdsong: An exploratory analysis
将人类声音模仿与鸟鸣相匹配:探索性分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oudyk, K;Lostanlen, V;Salamon, J;Farnsworth, A;Bello, JP
  • 通讯作者:
    Bello, JP
Kymatio: Scattering transforms in Python
Kymatio:Python 中的散射变换
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Andreux, Mathieu;Angles, Tomás;Exarchakis, Georgios;Leonarduzzi, Roberto;Rochette, Gaspar;Thiry, Louis;Zarka, John;Mallat, Stéphane;Andén, Joakim;Belilovsky, Eugene
  • 通讯作者:
    Belilovsky, Eugene
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan Bello其他文献

EVALUATING POST-PROCEDURAL EFFECTS OF THE MEDTRONIC MICRA™ PACEMAKER ON CARDIAC FUNCTION
  • DOI:
    10.1016/s0735-1097(24)02193-4
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas Lee;Afif Hossain;Vinesh Jonnala;Navid Radfar;Yong Lee;Felix Afriyie;Juan Bello;Shriya Patel;Emad F. Aziz
  • 通讯作者:
    Emad F. Aziz
THE MIGHTY MITRACLIP: A CASE OF CARDIOGENIC SHOCK SECONDARY TO SEVERE MITRAL REGURGITATION FROM FLAIL LEAFLET SUCCESSFULLY MANAGED BY MITRACLIP
  • DOI:
    10.1016/s0735-1097(24)05843-1
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Juan Bello;Aysha Hussain;Paul Y. Lee;Kandarp Suthar;Perry Wengrofsky;Chunguang Chen
  • 通讯作者:
    Chunguang Chen
Safety of routine protamine in the reversal of heparin in percutaneous coronary intervention: A systematic review and meta-analysis
常规鱼精蛋白在经皮冠状动脉介入治疗中逆转肝素的安全性:系统评价和荟萃分析
  • DOI:
    10.1016/j.ijcard.2023.131168
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Paul Y. Lee;Juan Bello;Catherine Ye;Shruti Varadarajan;Afif Hossain;Saahil Jumkhawala;Abhishek Sharma;Joseph Allencherril
  • 通讯作者:
    Joseph Allencherril
Trastornos del control de los impulsos y punding en la enfermedad de Parkinson: la necesidad de una entrevista estructurada ☆
Trastornos del control de los impulsos y punding en la enfermedad de Parkinson: la necesidad de una entrevista estructurada ☆
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ávila;X. Cardona;Juan Bello;P. Maho;F. Sastre;M. Martín
  • 通讯作者:
    M. Martín
PE-EK A BOO: WHEN PE IS NOT REALLY PE - AORTIC DISSECTION WITH HEMATOMA MASQUERADING AS PULMONARY EMBOLISM
  • DOI:
    10.1016/s0735-1097(24)06116-3
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Juan Bello;Yong Lee;Navid Radfar;Afif Hossain;Kirsys Guerrero;Jeffrey S. Lander
  • 通讯作者:
    Jeffrey S. Lander

Juan Bello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan Bello', 18)}}的其他基金

III: Medium: Spatial Sound Scene Description
III:媒介:空间声音场景描述
  • 批准号:
    1955357
  • 财政年份:
    2020
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
PFI-TT: Acoustic Continuous Condition Monitoring of Manufacturing Machinery
PFI-TT:制造机械的声学连续状态监测
  • 批准号:
    1827523
  • 财政年份:
    2018
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
I-Corps: Embedded Machine Listening for Smart Acoustic Monitoring
I-Corps:用于智能声学监控的嵌入式机器监听
  • 批准号:
    1759592
  • 财政年份:
    2017
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
CPS: Frontier: SONYC: A Cyber-Physical System for Monitoring, Analysis and Mitigation of Urban Noise Pollution
CPS:前沿:SONYC:用于监测、分析和缓解城市噪声污染的网络物理系统
  • 批准号:
    1544753
  • 财政年份:
    2016
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Continuing Grant
CAREER: Analyzing the Sequential Structure of Music Audio
职业:分析音乐音频的顺序结构
  • 批准号:
    0844654
  • 财政年份:
    2009
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Continuing Grant

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
  • 批准号:
    2027516
  • 财政年份:
    2020
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
  • 批准号:
    1934319
  • 财政年份:
    2019
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
  • 批准号:
    1926250
  • 财政年份:
    2019
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838222
  • 财政年份:
    2019
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
  • 批准号:
    1838248
  • 财政年份:
    2019
  • 资助金额:
    $ 61.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了