Determining the foundational properties of numerical development

确定数值开发的基本属性

基本信息

  • 批准号:
    1760874
  • 负责人:
  • 金额:
    $ 182.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2018-11-30
  • 项目状态:
    已结题

项目摘要

Award AbstractThe goal of this project, led by a team of researchers at the University of Rochester, is to answer important questions about fundamental cognitive capacities underlying number learning. The team will examine abilities assumed by prevailing theories to be universal by studying mathematical learning in the Tsimane', a unique population of farming-foragers. The extreme variability in their exposure to formal education will provide the researchers with an opportunity to evaluate the roles of education, age, maturity, and core cognitive systems in driving early mathematical development. The project will involve multiple methodologies from ethnographic studies of number use in Tsimane' life, to assessments of basic cognitive resources such as working memory, to tests of mathematical knowledge. The team will conduct studies of matched samples of children from 2 to 12 years of age in the US who grow up in impoverished learning environments. The goal is to identify which cognitive components of number competence ought to be targeted by future interventions so as to improve learning in US children living in poverty or who face learning delays. The project is funded by the EHR Core Research (ECR) program, which supports work that advances the fundamental research literature on STEM learning. Many abilities are related to numeracy and number sense, including knowledge of sets, the number words, counting, 1-1 correspondence, spatial relations, and approximate number estimation. Yet, it is not known which of these capacities are the foundations of early number growth and which are the consequence of number acquisition or other cultural factors. This proposal will seek to discover the cognitive underpinnings of number in an indigenous population, the Tsimane'. The key scientifically-relevant features of this population are the extreme variability in their formal educational system -- some children receive no formal education -- and that they progress through the stages of number learning at a protracted timescale, taking 3-4 times as long other children in the locale and children in the United States. Other children have longer, formal education. The high variability in education, age, and parental numeracy in this population will allow many of the components related to number growth to be disentangled as causal factors to an unusual extent. The team will use anthropological methods to document the cultural context and use of number in order to understand what practices support its acquisition and predict children's knowledge. They will also use a series of simple experimental tasks drawn from the mathematics education and cognitive science literatures to assess numerical development and chart the trajectory of Tsimane' number learning in detail. The goal is to develop a unifying computational model of number learning that can be used rapidly to predict which future interventions will be most promising in helping to improve learning in US children, especially those living in disadvantaged learning environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是由罗切斯特大学的一组研究人员领导的,是回答关于数字学习的基本认知能力的重要问题。该团队将通过研究Tsimane的数学学习来研究流行理论所假设的普遍能力,Tsimane是一个独特的农耕-觅食人口。他们接受正规教育的极端可变性将为研究人员提供一个机会来评估教育,年龄,成熟度和核心认知系统在推动早期数学发展中的作用。该项目将涉及多种方法,从Tsimane生活中数字使用的民族志研究,到工作记忆等基本认知资源的评估,再到数学知识的测试。该团队将对在贫困学习环境中长大的美国2至12岁儿童的匹配样本进行研究。我们的目标是确定未来干预措施应该针对数字能力的哪些认知组成部分,以改善生活在贫困中或面临学习延迟的美国儿童的学习。该项目由EHR核心研究(ECR)计划资助,该计划支持推进STEM学习基础研究文献的工作。许多能力都与计算能力和数感有关,包括集合知识、数词、计数、1-1对应、空间关系和近似数字估计。然而,目前尚不清楚这些能力中哪些是早期数量增长的基础,哪些是数量习得或其他文化因素的结果。这项提案将寻求发现土著居民Tsimane的数字认知基础。这一人群的关键科学相关特征是其正规教育系统的极端可变性-一些儿童没有接受正规教育-并且他们在很长的时间内通过数字学习阶段,花费的时间是当地其他儿童和美国儿童的3-4倍。其他孩子接受的正规教育时间更长。 这一人群在教育、年龄和父母算术方面的高度变异性,将使许多与数量增长相关的组成部分在不寻常的程度上被分解为因果因素。该团队将使用人类学的方法来记录文化背景和数字的使用,以了解什么样的做法支持其收购和预测儿童的知识。他们还将使用一系列从数学教育和认知科学文献中提取的简单实验任务来评估数字发展,并详细绘制Tsimane数字学习的轨迹。其目标是开发一个统一的数字学习的计算模型,可以快速用于预测哪些未来的干预措施将是最有希望的,以帮助改善美国儿童的学习,特别是那些生活在不利的学习环境中的儿童。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Child as Hacker.
  • DOI:
    10.1016/j.tics.2020.07.005
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    19.9
  • 作者:
    Rule JS;Tenenbaum JB;Piantadosi ST
  • 通讯作者:
    Piantadosi ST
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Piantadosi其他文献

A Compound Model of Multiple Treatment Selection with Applications to Marginal Structural Modeling
多重治疗选择的复合模型及其在边缘结构建模中的应用
  • DOI:
    10.1101/2023.02.08.23285425
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    David Stein;Lauren D’Arinzo;Fraser Gaspar;Max Oliver;Kristin Fitzgerald;Di Lu;Steven Piantadosi;Alpesh Amin;Brandon Webb
  • 通讯作者:
    Brandon Webb
Prediction of ventilation at maximal exercise in chronic air-flow obstruction.
慢性气流阻塞时最大运动时的通气预测。
Fraud in Clinical Trials
临床试验中的欺诈
Patient-centric trials for therapeutic development in precision oncology
以患者为中心的精准肿瘤学治疗开发试验
  • DOI:
    10.1038/nature15819
  • 发表时间:
    2015-10-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Andrew V. Biankin;Steven Piantadosi;Simon J. Hollingsworth
  • 通讯作者:
    Simon J. Hollingsworth
Patient-centric trials for therapeutic development in precision oncology
以患者为中心的精准肿瘤学治疗开发试验
  • DOI:
    10.1038/nature15819
  • 发表时间:
    2015-10-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Andrew V. Biankin;Steven Piantadosi;Simon J. Hollingsworth
  • 通讯作者:
    Simon J. Hollingsworth

Steven Piantadosi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Piantadosi', 18)}}的其他基金

Algorithmic foundations of mathematical knowledge
数学知识的算法基础
  • 批准号:
    2201843
  • 财政年份:
    2022
  • 资助金额:
    $ 182.07万
  • 项目类别:
    Continuing Grant
The Role of Attentional Control in Early Mathematical Learning
注意力控制在早期数学学习中的作用
  • 批准号:
    2000759
  • 财政年份:
    2020
  • 资助金额:
    $ 182.07万
  • 项目类别:
    Continuing Grant
Determining the foundational properties of numerical development
确定数值开发的基本属性
  • 批准号:
    1901262
  • 财政年份:
    2018
  • 资助金额:
    $ 182.07万
  • 项目类别:
    Standard Grant

相似海外基金

Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
  • 批准号:
    2346636
  • 财政年份:
    2024
  • 资助金额:
    $ 182.07万
  • 项目类别:
    Standard Grant
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
  • 批准号:
    2339483
  • 财政年份:
    2024
  • 资助金额:
    $ 182.07万
  • 项目类别:
    Continuing Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
  • 批准号:
    2338506
  • 财政年份:
    2024
  • 资助金额:
    $ 182.07万
  • 项目类别:
    Continuing Grant
CAREER: Efficient and Scalable Large Foundational Model Training on Supercomputers for Science
职业:科学超级计算机上高效且可扩展的大型基础模型训练
  • 批准号:
    2340011
  • 财政年份:
    2024
  • 资助金额:
    $ 182.07万
  • 项目类别:
    Standard Grant
Sonar Foundational Model for Representation Learning and Automatic Target Recognition Systems in Underwater Maritime Environment
水下海洋环境中表示学习和自动目标识别系统的声纳基础模型
  • 批准号:
    2903803
  • 财政年份:
    2024
  • 资助金额:
    $ 182.07万
  • 项目类别:
    Studentship
TRTech-PGR: Unlocking Bread Wheat Genome Diversity: Foundational Genome Sequences and Resources to Advance Breeding and Biotechnological Improvement of a Global Food Security Crop
TRTech-PGR:解锁面包小麦基因组多样性:促进全球粮食安全作物育种和生物技术改进的基础基因组序列和资源
  • 批准号:
    2322957
  • 财政年份:
    2024
  • 资助金额:
    $ 182.07万
  • 项目类别:
    Standard Grant
Establishing foundational tools and datasets for investigation of NSD1 gene function in neural development
建立用于研究神经发育中 NSD1 基因功能的基础工具和数据集
  • 批准号:
    10711291
  • 财政年份:
    2023
  • 资助金额:
    $ 182.07万
  • 项目类别:
TRIO Professional Development Core
TRIO 专业发展核心
  • 批准号:
    10725472
  • 财政年份:
    2023
  • 资助金额:
    $ 182.07万
  • 项目类别:
Faculty-Development
师资发展
  • 批准号:
    10661216
  • 财政年份:
    2023
  • 资助金额:
    $ 182.07万
  • 项目类别:
Conference: NSF-NIH Joint Workshop on Foundational AI in Biology
会议:NSF-NIH 生物学基础人工智能联合研讨会
  • 批准号:
    2325301
  • 财政年份:
    2023
  • 资助金额:
    $ 182.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了