Theories of Urban Traffic Dynamics and Adaptive Control for the Age of Big Data

大数据时代的城市交通动力学与自适应控制理论

基本信息

  • 批准号:
    1760971
  • 负责人:
  • 金额:
    $ 50.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The project will explore how big-data technologies can be applied to traffic signal control. The project will leverage recent advances in graph theory and data science to identify distinct congestion patterns and develop unique treatments that would adaptively treat traffic congestion on urban streets. Extensive preliminary work has been conducted under idealized conditions and this research will make the leap from idealized conditions to complex, real-world settings, for significant impact in reducing congestion and aiding economic growth for the nation. Algorithms designed for this project will be open-source, with the potential to be implemented on ordinary traffic and communication infrastructures. The development of a platform to simulate the developed algorithms in realistic settings will be a valuable teaching and outreach tool. The project's transformative quality lies in its plans to: (i) detect and distinguish the various geometric patterns that traffic congestion can exhibit on city streets; and (ii) target treatments to suit those distinct patterns. The detection of geometric patterns will be pursued using big-data monitoring technologies, and by representing street networks as graphs. Treatments envisioned for those distinct geometric patterns entail the re-timing of traffic signals, both to adaptively meter cordoned neighborhoods and to synchronize green phases to coincide with the dissipation of queues immediately downstream. These will be integrated with another treatment that expedites bus movements past traffic signals on as-needed bases. Specific enhancements are envisioned for existing models of neighborhood traffic, and for model-free, Reinforcement Learning approaches. The enhanced methods will be used to predict how the treatments perform in complex, real-world settings. The project will also explore how model and model-free predictions might be continually refined using inputs measured and processed with big-data technologies. Further exploration will then go toward coupling the refined predictions with optimization techniques, so that treatments can adapt over the day to suit a city's evolving congestion patterns. Once generalized in the above ways, the treatments will be tested and refined using simulation. The aforementioned algorithms will then be designed, and the refined treatments will be coded into the simulation platform for teaching and outreach purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将探索如何将大数据技术应用于交通信号控制。 该项目将利用图论和数据科学的最新进展来识别不同的拥堵模式,并开发独特的治疗方法,以适应城市街道的交通拥堵。在理想化条件下进行了广泛的前期工作,这项研究将从理想化条件跨越到复杂的现实世界环境,对减少拥堵和帮助国家经济增长产生重大影响。为该项目设计的算法将是开源的,有可能在普通的交通和通信基础设施上实现。 开发一个平台来模拟在现实环境中开发的算法将是一个有价值的教学和推广工具。 该项目的变革性在于其计划:(i)检测和区分交通拥堵在城市街道上可能表现出的各种几何模式;以及(ii)针对这些不同模式进行目标处理。 几何图案的检测将使用大数据监测技术,并通过将街道网络表示为图形来进行。 为这些不同的几何图案设想的治疗需要重新定时的交通信号,既适应米封锁的社区和同步绿色阶段,以配合立即下游的队列消散。 这些将与另一种处理方法相结合,根据需要加快公交车通过交通信号灯的速度。 针对现有的社区交通模型以及无模型强化学习方法,设想了具体的增强功能。 增强的方法将用于预测治疗在复杂的现实环境中的表现。 该项目还将探索如何使用大数据技术测量和处理的输入来不断改进模型和无模型预测。 然后,进一步的探索将把精确的预测与优化技术结合起来,这样治疗方法就可以在一天中适应城市不断变化的拥堵模式。 一旦以上述方式推广,将使用模拟测试和改进治疗方法。 上述算法将被设计出来,而精细化的治疗方法将被编码到模拟平台中,用于教学和推广目的。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
City-wide traffic control: Modeling impacts of cordon queues
Region-wide congestion prediction and control using deep learning
Cordon control with spatially-varying metering rates: A Reinforcement Learning approach
Synergies of combining demand- and supply-side measures to manage congested streets
Traffic signal plans to decongest street grids
  • DOI:
    10.1016/j.trb.2022.05.014
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bassel Sadek;Jean Doig Godier;Michael J. Cassidy;C. Daganzo
  • 通讯作者:
    Bassel Sadek;Jean Doig Godier;Michael J. Cassidy;C. Daganzo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Cassidy其他文献

170 OVERALL VOLUME OF UPPER GASTROINTESTINAL SURGERIES POSITIVELY IMPACTS GASTRIC CANCER OPERATION OUTCOMES AT CENTERS WITH A LOW GASTRECTOMY VOLUME
  • DOI:
    10.1016/s0016-5085(20)34397-3
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Susanna W. de Geus;Krista Hachey;Sing Chau Ng;Michael Cassidy;David McAneny;Jennifer F. Tseng;Teviah Sachs
  • 通讯作者:
    Teviah Sachs
Improving school attendance among homeless children: Evaluating the attendance matters program
  • DOI:
    10.1016/j.childyouth.2023.106880
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dan Treglia;Michael Cassidy;Jay Bainbridge
  • 通讯作者:
    Jay Bainbridge
785 IMPACT OF NEOADJUVANT THERAPY TIMING ON SHORT- AND LONGTERM SURVIVAL FOR GASTRIC ADENOCARCINOMA PATIENTS
  • DOI:
    10.1016/s0016-5085(20)34486-3
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kurt S. Schultz;Susanna W. de Geus;Teviah Sachs;Michael Cassidy;Sing Chau Ng;David McAneny;Jennifer F. Tseng
  • 通讯作者:
    Jennifer F. Tseng
Combined modality therapy of hepatic metastasis
肝转移瘤的综合治疗
  • DOI:
  • 发表时间:
    1979
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    M. Friedman;Michael Cassidy;Michael L. Levine;T. Phillips;S. Spivack;K. Resser
  • 通讯作者:
    K. Resser
676 DISCORDANCE OF CLINICAL AND PATHOLOGIC STAGING IN LOCALLY ADVANCED GASTRIC ADENOCARCINOMA
  • DOI:
    10.1016/s0016-5085(20)34471-1
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Susanna W. de Geus;Jian Zheng;Sing Chau Ng;Michael Cassidy;David McAneny;Jennifer F. Tseng;Teviah Sachs
  • 通讯作者:
    Teviah Sachs

Michael Cassidy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Cassidy', 18)}}的其他基金

Exploring the Integration of Systems Thinking in Biology in Participatory Professional Development
探索生物学系统思维在参与式专业发展中的整合
  • 批准号:
    2200815
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Continuing Grant
Towards improved forecasting of volcanic explosivity: Investigating the role of magma mixing
改进火山爆发预测:研究岩浆混合的作用
  • 批准号:
    NE/N014286/1
  • 财政年份:
    2017
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Fellowship
Conference Support: 19th International Symposium on Transportation and Traffic Theory; Berkeley Hill, California; July 18-20, 2011
会议支持:第19届交通运输与交通理论国际研讨会;
  • 批准号:
    1132456
  • 财政年份:
    2011
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Standard Grant

相似海外基金

SBIR Phase I: Testing computational feasibility and effectiveness of real time traffic nearcast for wildfire evacuation at the wildland urban interface
SBIR 第一阶段:测试荒地城市界面野火疏散实时交通近播的计算可行性和有效性
  • 批准号:
    2322210
  • 财政年份:
    2023
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Standard Grant
Predictive Analytics and Real-time Traffic Control for Urban Corridors
城市走廊的预测分析和实时交通控制
  • 批准号:
    LP200301389
  • 财政年份:
    2023
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Linkage Projects
Traffic accident and public transport data map-matching for urban mobility simulation
用于城市交通模拟的交通事故和公共交通数据地图匹配
  • 批准号:
    23KF0151
  • 财政年份:
    2023
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: SaTC: CORE: Small: Privately Collecting and Analyzing V2X Data for Urban Traffic Modeling
合作研究:SaTC:核心:小型:私下收集和分析用于城市交通建模的 V2X 数据
  • 批准号:
    2302689
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Standard Grant
A Stochastic Approach for Empirical Analyses of Urban/Traffic Models with Multiple Equilibria
多重均衡城市/交通模型实证分析的随机方法
  • 批准号:
    22K04347
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatiotemporal learning for urban mobility and traffic data
城市交通和交通数据的时空学习
  • 批准号:
    RGPIN-2019-05950
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated Modeling and Optimization of Urban Land Use and Dynamic Traffic Network Equilibrium
城市土地利用与动态交通网络均衡综合建模与优化
  • 批准号:
    22K04575
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Socially-Aware Control of Autonomy: Reshaping Urban Mobility in Traffic Networks with Mixed Vehicle Autonomy
职业:具有社会意识的自主控制:通过混合车辆自主重塑交通网络中的城市交通
  • 批准号:
    2145134
  • 财政年份:
    2022
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Continuing Grant
GeoSence - Geofencing strategies for implementation in urban traffic management and planning
GeoSence - 在城市交通管理和规划中实施的地理围栏策略
  • 批准号:
    ES/W000628/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Research Grant
Microscopic urban traffic state estimation and optimization by data driven approach
数据驱动方法的微观城市交通状态估计和优化
  • 批准号:
    20KK0334
  • 财政年份:
    2021
  • 资助金额:
    $ 50.69万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了