Biomechanical Properties of Bioenergy Sorghum: Changes in Gene Expression Due to Mechanical Stimulation

生物能源高粱的生物力学特性:机械刺激引起的基因表达变化

基本信息

项目摘要

Bioenergy sorghum, a relatively new type of sorghum, has emerged as a potential source for biofuel owing to its large amount of biomass. This sorghum grows relatively tall (3-5 m) but commonly breaks and topples under wind, rain, hail or other mechanical stresses. A promising approach to reduce breakage is to develop new mechanically robust sorghum varieties. To do this will require a fundamental understanding of the biomechanical properties of stalks and identifying the genetic and environmental influences that produce stronger plants. Experiments have shown that mechanically stimulating the plants during growth can significantly change the physical and biomechanical characteristics of sorghum stems. This occurs because the mechanical load changes the growth of the cells in the plant stem. This mechanical stimulation causes adaptive growth that improves the mechanical properties of the stalk. This research will accelerate the development of new fuel-rich and mechanically robust varieties of sorghum, thereby leading to significant increases in food, feed, and biomass productivity. This project will provide undergraduate and graduate students with interdisciplinary professional and technical training. The team will also participate in a summer research experience for teacher (RET) program and summer camps to disseminate the study of biomechanics and genetics/epigenetics of sorghum to high school teachers and students.To accomplish these goals, this study will integrate experimental and computational studies of structural morphologies, biomechanical properties, physiology, and genetics/epigenetics of bioenergy sorghum stalks, to provide a fundamental explanation of stalk lodging (breaking) and to guide development of new lodging-resistant sorghum. The intellectual significance of this work resides in addressing the following fundamental topics: 1) uncovering the thigmomorphogenic response (response to mechanical stimulation) in tuning the biomechanical properties of bioenergy sorghum stalks, including investigating epigenetic changes, gene expression, and hormonal responses associated with the mechanical properties of stalks; 2) revealing the impact of the viscoelastic responses of stalks and their constituents (sclerenchymatous tissue and parenchymatous tissue with different cell wall structures) on stem lodging; and 3) providing structure-property-genetic/epigenetic relationships for stalks with superior biomechanical properties. Knowledge gained from this study will likely be transferable to other grasses, thereby extending the impact of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物能源高粱是一种相对较新的高粱,由于其大量的生物质,已成为生物燃料的潜在来源。这种高粱长得相对较高(3-5米),但通常会在风、雨、冰雹或其他机械压力下折断和倾倒。一个有希望的减少破碎的方法是开发新的机械坚固的高粱品种。 要做到这一点,需要对秸秆的生物力学特性有基本的了解,并确定产生更强壮植物的遗传和环境影响。实验表明,在植物生长期间机械刺激可以显著改变高粱茎的物理和生物力学特性。 这是因为机械负荷改变了植物茎中细胞的生长。这种机械刺激导致适应性生长,改善了茎的机械性能。这项研究将加速开发新的燃料丰富和机械耐用的高粱品种,从而导致粮食,饲料和生物质生产力的显着增加。该项目将为本科生和研究生提供跨学科的专业和技术培训。 该团队还将参加教师暑期研究体验(RET)计划和夏令营,向高中教师和学生传播高粱的生物力学和遗传学/表观遗传学研究。为了实现这些目标,本研究将整合生物能源高粱秸秆的结构形态,生物力学特性,生理学和遗传学/表观遗传学的实验和计算研究,为高粱茎秆倒伏(折断)提供理论依据,指导抗倒伏高粱新品种的选育。这项工作的学术意义在于解决以下基本主题:1)揭示触形态反应(对机械刺激的反应)调节生物能源高粱秸秆的生物力学性能,包括研究与秸秆机械性能相关的表观遗传变化,基因表达和激素反应; 2)揭示秸秆及其组分的粘弹性响应的影响细胞壁结构不同的厚壁组织和薄壁组织对茎倒伏的影响;和3)为具有上级生物力学性质的茎提供结构-性质-遗传/表观遗传关系。从这项研究中获得的知识可能会转移到其他草,从而扩大该项目的影响。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Influence of Thigmo-stimulation on Anatomical Traits and Biomechanical Properties of Bioenergy Sorghum Stems
Thigmo刺激对生物能源高粱茎的解剖特性和生物力学特性的影响
Modeling and Simulation of Creep Response of Sorghum Stems: Towards an Understanding of Stem Geometrical and Material Variations
高粱茎蠕变响应的建模和仿真:了解茎的几何和材料变化
  • DOI:
    10.1016/j.biosystemseng.2022.02.009
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Omid Zargar, Matt Pharr
  • 通讯作者:
    Omid Zargar, Matt Pharr
Modeling Mechanical Behaviors of Plant Stems undergoing Micro-structural Changes
模拟植物茎经历微观结构变化的力学行为
  • DOI:
    10.1016/j.mechmat.2019.103175
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Song, Ruyue and
  • 通讯作者:
    Song, Ruyue and
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anastasia Muliana其他文献

Structural performance of flexible freeform panels subjected to wind loads
  • DOI:
    10.1007/s11709-024-1070-6
  • 发表时间:
    2024-06-21
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Yong Yoo;Zaryab Shahid;Renzhe Chen;Maria Koliou;Anastasia Muliana;Negar Kalantar
  • 通讯作者:
    Negar Kalantar
A nonlinear constitutive model for describing cyclic mechanical responses of $$\hbox {BaTiO}_{3}/\hbox {Ag}$$ composites
  • DOI:
    10.1007/s00707-017-1801-z
  • 发表时间:
    2017-02-16
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Junwei Xing;Miladin Radovic;Anastasia Muliana
  • 通讯作者:
    Anastasia Muliana
A thermo-viscoelastic model of anisotropic polyamide short glass fiber composites
  • DOI:
    10.1016/j.compstruct.2022.115850
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    7.100
  • 作者:
    Ruyue Song;Matthias Morak;Anastasia Muliana
  • 通讯作者:
    Anastasia Muliana
Mechanical responses of Semi-crystalline thermoplastic polymers at various temperatures
Flexibility, Toughness, and Load Bearing of 3D-Printed Chiral Kerf Composite Structures
3D 打印手性切口复合结构的柔韧性、韧性和承载能力
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aryabhat Darnal;Kanak Mantri;Will Betts;Negar Kalantar;Jeeeun Kim;Anastasia Muliana
  • 通讯作者:
    Anastasia Muliana

Anastasia Muliana的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anastasia Muliana', 18)}}的其他基金

The Influence of Mechanical Loading on the Hydrolysis of Biodegradable Polymer Implants
机械载荷对生物可降解聚合物植入物水解的影响
  • 批准号:
    2013696
  • 财政年份:
    2021
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
EAGER: DREAM-B: Collaborative Research: Moldable and Wave Tunable Materials for Complex Freeform Structures
EAGER:DREAM-B:合作研究:用于复杂自由形状结构的可模压和波可调材料
  • 批准号:
    1912823
  • 财政年份:
    2019
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Time Dependent Behavior of Flexible Active Composites
合作研究:柔性活性复合材料的时间依赖性行为
  • 批准号:
    1437086
  • 财政年份:
    2014
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Fatigue and Lifetime Performance of Polymer Sandwich Constructions -A Multi-Scale Experiment and Modeling Approach
合作研究:聚合物夹层结构的疲劳和寿命性能 - 多尺度实验和建模方法
  • 批准号:
    1266037
  • 财政年份:
    2013
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Workshop: Durability of Polymers and Polymeric Composites: Current Challenges and Future Prospects; March 6th-7th 2013, Monterey, California
研讨会:聚合物和聚合物复合材料的耐久性:当前挑战和未来前景;
  • 批准号:
    1326679
  • 财政年份:
    2013
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Nonlinear Field-Coupling Responses of Adaptive Functionally Graded Structures
自适应功能梯度结构的非线性场耦合响应
  • 批准号:
    1030836
  • 财政年份:
    2010
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
CAREER: Time-Dependent Multi-Scale Frameworks for Mechano-Thermo-Hygro-Visco and Damage Behaviors of Composite Materials and Structures
职业:复合材料和结构的机械-热-湿-粘性及损伤行为的时间相关多尺度框架
  • 批准号:
    0546528
  • 财政年份:
    2006
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant

相似海外基金

Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Continuing Grant
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Training Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了