CDS&E: Collaborative Research: Autonomous Systems for Experimental and Computational Data Generation and Data-Driven Modeling of Combustion Kinetics

CDS

基本信息

  • 批准号:
    1761491
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

To meet pressing societal needs for more cost-effective and sustainable energy, future combustion engines need to be more fuel-efficient, produce less emissions, and operate on a variety of fuels, including alternative fuels. Engineers often use computer models of fuel combustion chemistry to design engines with improved performance and determine the suitability of a certain fuel in an engine. In producing combustion models for engineers to use, scientists usually start by creating a trial model, then generate computational and experimental data to test the model, and improve and validate the model against the data. The latter two tasks are often repeated until the resulting model is sufficiently accurate for reliable use. Present techniques for developing reliable, validated models for transportation-relevant fuels typically involve combining the efforts of multiple research groups, taking multiple years or even decades to obtain enough data. The present approach for developing fuel combustion chemistry models is insufficient to address pressing energy needs in a timely and effective manner, particularly as many potential modern fuels have not been well characterized. This project will create and test the performance of a new autonomous system that creates trial models, generates data, and makes model improvements to rapidly converge on a reliable, validated, fuel chemistry model. Successful implementation of the novel autonomous system will provide an advanced model development tool for combustion kinetics and an accelerated means of understanding the oxidation behavior of the many alternative fuels, which governs their viability. Finally, this project will engage undergraduate and graduate students in research and create novel teaching modules for data science applied to combustion kinetics. The modules will enhance proficiency of younger generations of students in the scripting and data science tools necessary to ensuring a competitive STEM program in the U.S.The technical objective of this project is to create an autonomous system for studying fuel oxidation chemistry and evaluate its performance relative to current time-intensive approaches. This autonomous system will use a multi-physics uncertainty quantification framework, MultiScale Informatics, to integrate an automated kinetic model construction platform, Reaction Mechanism Generator, an adaptable automated High-Throughput Jet Stirred Reactor experiment, and an algorithm for performing automated quantum chemistry, statistical thermodynamics, and transition state theory calculations (AutoTST). By linking the uncertainties both in experimental observables in the Jet Stirred Reactor and in Quantities of Interest, such as onset of ignition in an engine, to physically meaningful parameters in the kinetic model, such as barrier heights of a reaction, calculations and experiments can be optimally designed to improve the model?s accuracy for predicting Quantities of Interest. This project seeks to (1) create the autonomous platform, (2) use it to generate a model for n-heptane, for which previous data and models are relatively mature, to assess its performance, and (3) apply it to diisobutylene, a promising biofuel recently identified in the DOE?s Co-Optima program. This project will create a new data-driven approach for combustion research at an accelerated pace, contribute to scientific understanding for n-heptane and diisobutylene, and, more broadly, contribute to understanding of autonomous science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了满足社会对更具成本效益和可持续能源的迫切需求,未来的内燃机需要更省油,产生更少的排放,并使用各种燃料,包括替代燃料。 工程师经常使用燃料燃烧化学的计算机模型来设计具有改进性能的发动机,并确定发动机中某种燃料的适用性。在生成供工程师使用的燃烧模型时,科学家通常首先创建试验模型,然后生成计算和实验数据来测试模型,并根据数据改进和验证模型。后两个任务经常重复,直到得到的模型足够准确,可以可靠地使用。目前开发可靠的、经过验证的运输相关燃料模型的技术通常涉及多个研究小组的努力,需要数年甚至数十年的时间才能获得足够的数据。目前开发燃料燃烧化学模型的方法不足以及时有效地解决紧迫的能源需求,特别是因为许多潜在的现代燃料尚未得到很好的表征。该项目将创建和测试一个新的自主系统的性能,该系统将创建试验模型,生成数据,并对模型进行改进,以快速收敛到一个可靠的,经过验证的燃料化学模型。新的自主系统的成功实施将为燃烧动力学提供先进的模型开发工具,并加速了解许多替代燃料的氧化行为,这决定了它们的可行性。 最后,该项目将吸引本科生和研究生参与研究,并为应用于燃烧动力学的数据科学创建新的教学模块。这些模块将提高年轻一代学生在脚本和数据科学工具方面的熟练程度,这些工具是确保美国有竞争力的STEM项目所必需的。 该自治系统将使用多物理不确定性量化框架MultiScale Informatics,以集成自动化动力学模型构建平台,反应机制生成器,自适应自动化高通量喷射搅拌反应器实验,以及用于执行自动化量子化学,统计热力学和过渡态理论计算的算法(AutoTST)。通过连接的不确定性都在实验观测的喷射搅拌反应器和在感兴趣的,如发动机点火的开始,物理上有意义的参数在动力学模型中,如反应的势垒高度,计算和实验可以优化设计,以改善模型?的准确性预测的兴趣。该项目旨在(1)创建自主平台,(2)使用它来生成正庚烷的模型,以前的数据和模型相对成熟,以评估其性能,以及(3)将其应用于二异丁烯,一种最近在DOE确定的有前途的生物燃料。的Co-Optima计划。该项目将为燃烧研究创造一种新的数据驱动方法,加速燃烧研究的步伐,有助于对正庚烷和二异丁烯的科学理解,更广泛地说,有助于对自主科学的理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Impact of “missing” third-body efficiencies on kinetic model predictions of combustion properties
“缺失”第三体效率对燃烧特性动力学模型预测的影响
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Burke其他文献

Vid2Param: Online system identification from video for robotics applications
Vid2Param:机器人应用视频的在线系统识别
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Asenov;Michael Burke;Daniel Angelov;Todor Davchev;Kartic Subr;S. Ramamoorthy
  • 通讯作者:
    S. Ramamoorthy
Dortmund Vital Study: a protocol of an interdisciplinary cross-sectional and longitudinal study to evaluate impact of biological and lifestyle factors on cognitive aging and work ability (Preprint)
多特蒙德生命研究:一项跨学科横断面和纵向研究方案,旨在评估生物和生活方式因素对认知老化和工作能力的影响(预印本)
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Gajewski;Stephan Getzmann;P. Bröde;Michael Burke;C. Cadenas;S. Capellino;M. Claus;E. Genç;K. Golka;J. Hengstler;T. Kleinsorge;R. Marchan;M. Nitsche;J. Reinders;C. van Thriel;C. Watzl;E. Wascher
  • 通讯作者:
    E. Wascher
Simultaneous Ultraviolet and Visible Excitation Confocal Microscopy
同时紫外和可见光激发共焦显微镜
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Burke;D. Clapham
  • 通讯作者:
    D. Clapham
Treebank-based acquisition of wide-coverage, probabilistic LFGresources: project overview, results and evaluation
基于树库的广覆盖、概率性填埋垃圾资源获取:项目概述、结果和评估
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Burke;A. Cahill;Ruth O'Donovan;Josef van Genabith;Andy Way
  • 通讯作者:
    Andy Way
199: Prevalence of Depression in Patients Following Radical Prostatectomy
  • DOI:
    10.1016/s0022-5347(18)34464-1
  • 发表时间:
    2005-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kate Kraft;Diane Thompson;John A. Petros;Michael Burke;Hunter Hardy;Fray F. Marshall
  • 通讯作者:
    Fray F. Marshall

Michael Burke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Burke', 18)}}的其他基金

CAREER: Extrapolatable, Uncertainty-Quantified Modeling of Nitrogen Kinetics Informed by Data Across Multiple Scales
职业:基于多尺度数据的氮动力学的可推断、不确定性量化建模
  • 批准号:
    1944004
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Multi-Component Reactive Pressure-dependent Chemistry Verified by Multi-Scale Uncertainty Quantification
通过多尺度不确定性定量验证多组分反应压力相关化学
  • 批准号:
    1706252
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
2003 Temperature Stress in Plants Gordon Conference, Janury 26 - 30, 2003, Oxnard, California
2003 年植物温度胁迫戈登会议,2003 年 1 月 26 - 30 日,加利福尼亚州奥克斯纳德
  • 批准号:
    0235466
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Curriculum Enhancement Through Atomic Absorption Spectroscopy
通过原子吸收光谱学增强课程
  • 批准号:
    9551808
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Modern Applications of Separation Science in the Undergraduate Curriculum
分离科学在本科课程中的现代应用
  • 批准号:
    9551840
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Supercooling of Water: a Factor in Woody Plant Distributions
水的过冷:木本植物分布的一个因素
  • 批准号:
    7423137
  • 财政年份:
    1975
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了