CAREER: Extrapolatable, Uncertainty-Quantified Modeling of Nitrogen Kinetics Informed by Data Across Multiple Scales
职业:基于多尺度数据的氮动力学的可推断、不确定性量化建模
基本信息
- 批准号:1944004
- 负责人:
- 金额:$ 50.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Predictive computer models have immense potential to enable faster, cheaper design of cleaner, more efficient engines that our society and planet urgently need. To have the highest impact on designing engines, models must make accurate predictions with known uncertainty, especially for new cutting-edge engine designs never manufactured or tested. Such predictive models would be especially useful for minimizing the formation of nitrogen oxides (NOx), which are responsible for smog, ground-level ozone, and other effects detrimental to human and environmental health. The goal of this project is to create and validate a predictive model for NOx formation during combustion. An innovative approach, which leverages modern data science and computational chemistry, will be used to create predictive models with known uncertainty. The resulting methodology and models will then form the backbone for future studies of NOx formation during combustion of all conventional and alternative fuels. The project will also engage local high-school students in chemistry and data-science projects, create and disseminate lesson plans for high-school and university teachers, and partner with industry to enable the research to lead to better engine designs immediately.The technical objective is to create an extrapolatable, uncertainty-quantified, foundational NOx kinetic model by optimally selecting, creating, and exploiting data from molecular to macroscopic scales. The approach fuses (1) theoretical calculations to create molecular data and develop rate laws and mixture rules to represent the pressure and composition dependence of reaction rates, (2) experimental measurements to gather macroscopic data at conditions that best inform engine predictions, and (3) uncertainty-quantified modeling based on multiscale data to create models trustable for predictive design. This work largely centers on undiscovered pathways hypothesized to comprise a major NOx route at the high pressures and low peak temperatures of high-efficiency, low-NOx engines. Altogether, the research will address key outstanding issues in the present understanding of NOx formation at high pressures and produce the first uncertainty-quantified NOx kinetic model constrained by multiscale data. More broadly, the present rate laws, mixture rules, and multiscale data-driven approach will also enable better models of, simulation codes for, and understanding of many other chemically reacting gases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预测计算机模型具有巨大的潜力,可以更快,更便宜地设计出我们社会和地球迫切需要的更清洁,更高效的发动机。为了对发动机设计产生最大的影响,模型必须在已知不确定性的情况下做出准确的预测,特别是对于从未制造或测试过的新尖端发动机设计。这种预测模型对于最大限度地减少氮氧化物(NOx)的形成特别有用,氮氧化物是烟雾,地面臭氧和其他对人类和环境健康有害的影响的原因。该项目的目标是创建和验证燃烧过程中NOx形成的预测模型。利用现代数据科学和计算化学的创新方法将用于创建具有已知不确定性的预测模型。由此产生的方法和模型,然后将形成所有传统和替代燃料的燃烧过程中的氮氧化物形成的未来研究的骨干。 该项目还将吸引当地高中学生参与化学和数据科学项目,为高中和大学教师创建和传播教案,并与工业界合作,使研究能够立即导致更好的发动机设计。技术目标是通过优化选择,创建,并利用从分子到宏观尺度的数据 该方法融合了(1)理论计算以创建分子数据并开发速率定律和混合规则,以表示反应速率的压力和成分依赖性,(2)实验测量以收集最能为发动机预测提供信息的条件下的宏观数据,以及(3)基于多尺度数据的不确定性量化建模,以创建可信赖的预测设计模型。 这项工作主要集中在未发现的途径,假设包括一个主要的氮氧化物的路线在高压和低峰值温度的高效率,低氮氧化物发动机。 总而言之,这项研究将解决目前在高压下对NOx形成的理解中存在的关键突出问题,并产生第一个受多尺度数据约束的不确定性量化NOx动力学模型。 更广泛地说,目前的速率定律,混合规则和多尺度数据驱动的方法也将使更好的模型,模拟代码,并了解许多其他化学反应气体。这一奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the role of HNNO in NO x formation
HNNO 在 NO x 形成中的作用
- DOI:10.1016/j.proci.2022.08.044
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Meng, Qinghui;Lei, Lei;Lee, Joe;Burke, Michael P.
- 通讯作者:Burke, Michael P.
NH3 oxidation by NO2 in a jet-stirred reactor: The effect of significant uncertainties in H2NO kinetics
- DOI:10.1016/j.jaecs.2022.100095
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Rodger E. Cornell;M. Barbet;Joe Lee;M. P. Burke
- 通讯作者:Rodger E. Cornell;M. Barbet;Joe Lee;M. P. Burke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Burke其他文献
Vid2Param: Online system identification from video for robotics applications
Vid2Param:机器人应用视频的在线系统识别
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Martin Asenov;Michael Burke;Daniel Angelov;Todor Davchev;Kartic Subr;S. Ramamoorthy - 通讯作者:
S. Ramamoorthy
Dortmund Vital Study: a protocol of an interdisciplinary cross-sectional and longitudinal study to evaluate impact of biological and lifestyle factors on cognitive aging and work ability (Preprint)
多特蒙德生命研究:一项跨学科横断面和纵向研究方案,旨在评估生物和生活方式因素对认知老化和工作能力的影响(预印本)
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
P. Gajewski;Stephan Getzmann;P. Bröde;Michael Burke;C. Cadenas;S. Capellino;M. Claus;E. Genç;K. Golka;J. Hengstler;T. Kleinsorge;R. Marchan;M. Nitsche;J. Reinders;C. van Thriel;C. Watzl;E. Wascher - 通讯作者:
E. Wascher
Simultaneous Ultraviolet and Visible Excitation Confocal Microscopy
同时紫外和可见光激发共焦显微镜
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Michael Burke;D. Clapham - 通讯作者:
D. Clapham
Treebank-based acquisition of wide-coverage, probabilistic LFGresources: project overview, results and evaluation
基于树库的广覆盖、概率性填埋垃圾资源获取:项目概述、结果和评估
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Michael Burke;A. Cahill;Ruth O'Donovan;Josef van Genabith;Andy Way - 通讯作者:
Andy Way
199: Prevalence of Depression in Patients Following Radical Prostatectomy
- DOI:
10.1016/s0022-5347(18)34464-1 - 发表时间:
2005-04-01 - 期刊:
- 影响因子:
- 作者:
Kate Kraft;Diane Thompson;John A. Petros;Michael Burke;Hunter Hardy;Fray F. Marshall - 通讯作者:
Fray F. Marshall
Michael Burke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Burke', 18)}}的其他基金
CDS&E: Collaborative Research: Autonomous Systems for Experimental and Computational Data Generation and Data-Driven Modeling of Combustion Kinetics
CDS
- 批准号:
1761491 - 财政年份:2018
- 资助金额:
$ 50.31万 - 项目类别:
Standard Grant
Multi-Component Reactive Pressure-dependent Chemistry Verified by Multi-Scale Uncertainty Quantification
通过多尺度不确定性定量验证多组分反应压力相关化学
- 批准号:
1706252 - 财政年份:2017
- 资助金额:
$ 50.31万 - 项目类别:
Standard Grant
2003 Temperature Stress in Plants Gordon Conference, Janury 26 - 30, 2003, Oxnard, California
2003 年植物温度胁迫戈登会议,2003 年 1 月 26 - 30 日,加利福尼亚州奥克斯纳德
- 批准号:
0235466 - 财政年份:2003
- 资助金额:
$ 50.31万 - 项目类别:
Standard Grant
Curriculum Enhancement Through Atomic Absorption Spectroscopy
通过原子吸收光谱学增强课程
- 批准号:
9551808 - 财政年份:1995
- 资助金额:
$ 50.31万 - 项目类别:
Standard Grant
Modern Applications of Separation Science in the Undergraduate Curriculum
分离科学在本科课程中的现代应用
- 批准号:
9551840 - 财政年份:1995
- 资助金额:
$ 50.31万 - 项目类别:
Standard Grant
Supercooling of Water: a Factor in Woody Plant Distributions
水的过冷:木本植物分布的一个因素
- 批准号:
7423137 - 财政年份:1975
- 资助金额:
$ 50.31万 - 项目类别:
Standard Grant