Controlling Adhesion Between Stiff Surfaces by Tailoring Interface Geometry

通过定制界面几何形状控制刚性表面之间的粘附力

基本信息

  • 批准号:
    1761726
  • 负责人:
  • 金额:
    $ 45.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Stiff and hard materials with flat and clean surfaces can spontaneously adhere when contacted even under minimal pressure. This "direct bonding" process is used to join ultra-flat glass optics and to bond large-diameter semiconductor wafers. It is also essential in emerging technologies based on wafer-scale semiconductor layer transfer processes and micro-transfer printing, including 3D integrated circuits, microelectromechanical systems (MEMS), and flexible hybrid electronics. This project focuses on understanding adhesion of interfaces formed by bonding relatively stiff materials with surfaces containing engineered features that give rise to imperfect adhesion. The hypothesis is that surface patterning can be used to realize controlled and directionally-dependent adhesion between stiff materials. Even though nearly all interfaces have imperfect adhesion, there remains a fundamentally incomplete understanding of the mechanics of imperfect adhesion, both from scientific and engineering points of view. Consequently, at present the design of surfaces with desired adhesion and toughness is mostly trial and error based. This project will advance the science of adhesion and will enhance the fabrication of soft and hard electronics as well as MEMS, impacting national health, prosperity, and welfare and securing national defense. From an education and outreach standpoint, this project will lead to new modules and hands-on demos on imperfect adhesion that will be broadly used to educate at all levels: graduate and undergraduate students, K-12 students, and the public. Through a combination of experiments and rigorous mechanics analyses incorporating traction-separation laws that are physically motivated and experimentally calibrated, research will be conducted to design methodologies to control interfacial toughness. The adhesion of (1) micro- and nano-patterned silicon surfaces with various geometries, and (2) surfaces with engineered waviness will be investigated. Atomic force microscopy-based measurements will be used to characterize the traction-separation adhesion law and determine parameters such as the work of adhesion and interaction length scale. Micro- and nanopatterning will be used to introduce adhesion anisotropy and asymmetry, yielding interfaces that have dramatically different toughness depending on the direction of loading and crack propagation. An accurate characterization of the traction-separation law governing adhesion, which is required to predict toughness, will be obtained from a combination of AFM measurements and experiments on wavy interfaces coupled with detailed analyses. In addition, use simulation tools will be developed and used to incorporate the experimentally-verified adhesion laws in parametric studies to design surface patterns to meet specific objectives. The work will lead to models that allow for the design of interfaces with controlled, anisotropic, and asymmetric toughness. The understanding of imperfect adhesion will enable advances in micro- and nano-patterning to be exploited to realize innovative approaches to control interface toughness through geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
坚硬、表面平整、清洁的材料,即使在最小压力下接触时,也会自发粘连。这种“直接键合”工艺用于连接超平板玻璃光学元件和大直径半导体晶圆。它在基于晶片规模的半导体层转移工艺和微转移印刷的新兴技术中也是必不可少的,包括3D集成电路、微电子机械系统(MEMS)和柔性混合电子产品。本项目的重点是了解通过将相对坚硬的材料与含有导致不完全粘合的工程特征的表面粘合而形成的界面的粘附性。假设表面图案化可以用来实现刚性材料之间可控的和方向相关的粘接。尽管几乎所有的界面都有不完全的粘接,但从科学和工程的角度来看,对不完全粘接的机理仍然存在根本的不完整的理解。因此,目前设计具有理想附着力和韧性的表面主要是基于试错法。该项目将促进粘着科学的发展,并将加强软硬电子和MEMS的制造,影响国家的健康、繁荣和福利,保障国防安全。从教育和外联的角度来看,这个项目将产生关于不完全粘合的新模块和动手演示,将被广泛用于各级教育:研究生和本科生、K-12学生和公众。通过结合实验和严格的力学分析,结合物理激励和实验校准的牵引-分离定律,将进行研究,以设计控制界面韧性的方法。将研究(1)各种几何形状的微米和纳米图案硅表面以及(2)具有工程波纹度的表面的粘附性。基于原子力显微镜的测量将被用来表征牵引-分离粘着规律,并确定诸如粘着功和相互作用长度尺度等参数。微米和纳米涂层将被用来引入附着力各向异性和不对称性,产生根据加载方向和裂纹扩展而具有显著不同韧性的界面。通过AFM测量和波状界面上的实验以及详细的分析,将获得控制附着力的牵引-分离规律的准确表征,这是预测韧性所必需的。此外,将开发和使用USE模拟工具,将实验验证的附着力定律纳入参数研究,以设计表面图案以满足特定目标。这项工作将产生允许设计具有受控、各向异性和非对称韧性的界面的模型。对不完美附着力的理解将使微纳图形的进步能够被利用,以实现通过几何控制界面韧性的创新方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning-based optimization of the design of composite pillars for dry adhesives
  • DOI:
    10.1016/j.eml.2022.101695
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Aoyi Luo;Hang Zhang;K. Turner
  • 通讯作者:
    Aoyi Luo;Hang Zhang;K. Turner
Adhesion of beams with subsurface elastic heterogeneity
具有次表面弹性异质性的梁的粘附
Achieving enhanced adhesion through optimal stress distributions
Mechanics of crack path selection in microtransfer printing: Challenges and opportunities for process control
Exploiting interface patterning for adhesion control
利用界面图案进行粘附控制
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Bassani其他文献

John Bassani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Bassani', 18)}}的其他基金

Mechano-Chemical Coupling in the Adhesion of Thin Shell Structures: Transitions Between Weakly- and Well- Bonded States
薄壳结构粘合中的机械化学耦合:弱键合态和良好键合态之间的转变
  • 批准号:
    0900058
  • 财政年份:
    2009
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing Grant
ITR: Physics-Based Modeling of Plastic Flow that Couples Atomistics of Unit Processes with Macroscopic Simulations
ITR:基于物理的塑性流动建模,将单元过程的原子性与宏观模拟相结合
  • 批准号:
    0219243
  • 财政年份:
    2002
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant
Non-Associated Plastic Flow of Ductile Single Crystals
延性单晶的非缔合塑性流动
  • 批准号:
    9900131
  • 财政年份:
    2000
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing grant
Relationship Between Atomic and Continuum Properties of Interfaces and Free Surfaces
界面和自由表面的原子性质和连续性质之间的关系
  • 批准号:
    9412887
  • 财政年份:
    1994
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing grant
Control of Microstructure Against Strain Localization During Deformation Processing
变形加工过程中微观结构对应变局部化的控制
  • 批准号:
    9202513
  • 财政年份:
    1992
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Standard Grant
Relationship Between Atomic Structure and Mechanical Properties of Interfaces and Free Surfaces
原子结构与界面和自由表面力学性能之间的关系
  • 批准号:
    9112196
  • 财政年份:
    1991
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing grant
Presidential Young Investigator Award: Finite-Strain Deformation of Polymers
总统青年研究员奖:聚合物的有限应变变形
  • 批准号:
    8352172
  • 财政年份:
    1984
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing Grant
Theory of Creep Crack Growth: Transient Effects (Materials Research)
蠕变裂纹扩展理论:瞬态效应(材料研究)
  • 批准号:
    8406556
  • 财政年份:
    1984
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing grant

相似国自然基金

CAV2/CAV1通过调节Focal adhesion信号通路抑制鼻咽癌放疗抵抗的机制研究
  • 批准号:
    JCZRLH202500859
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
GMFG/F-actin/cell adhesion 轴驱动 EHT 在造 血干细胞生成中的作用及机制研究
  • 批准号:
    TGY24H080011
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: The molecular interplay between integrin adhesion, allostery and shape-shifting
职业:整合素粘附、变构和变形之间的分子相互作用
  • 批准号:
    2239492
  • 财政年份:
    2023
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Continuing Grant
The relationship between cell adhesion molecule 2 (Cadm2), sex and developmental age in cannabis-induced behavioural and neurobiological consequences
细胞粘附分子 2 (Cadm2)、性别和发育年龄在大麻引起的行为和神经生物学后果中的关系
  • 批准号:
    548146-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Investigating the Interplay between Buoyancy and Adhesion in 2D Aggregates of Oil Droplets through Observations of the Rayleigh-Taylor Instability and Glass Transition
通过观察瑞利-泰勒不稳定性和玻璃化转变来研究二维油滴聚集体中浮力和粘附力之间的相互作用
  • 批准号:
    547002-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The relationship between cell adhesion molecule 2 (Cadm2), sex and developmental age in cannabis-induced behavioural and neurobiological consequences
细胞粘附分子 2 (Cadm2)、性别和发育年龄在大麻引起的行为和神经生物学后果中的关系
  • 批准号:
    548146-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Investigating the Interplay between Buoyancy and Adhesion in 2D Aggregates of Oil Droplets through Observations of the Rayleigh-Taylor Instability and Glass Transition
通过观察瑞利-泰勒不稳定性和玻璃化转变来研究二维油滴聚集体中浮力和粘附力之间的相互作用
  • 批准号:
    547002-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigating the Interplay between Buoyancy and Adhesion in 2D Aggregates of Oil Droplets through Observations of the Rayleigh-Taylor Instability and Glass Transition
通过观察瑞利-泰勒不稳定性和玻璃化转变来研究二维油滴聚集体中浮力和粘附力之间的相互作用
  • 批准号:
    547002-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of novel intervening approaches to cancer progression by comprehensive analyses of interactions between cell adhesion molecules
通过综合分析细胞粘附分子之间的相互作用,开发癌症进展的新干预方法
  • 批准号:
    20K21539
  • 财政年份:
    2020
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Interaction between Tissue Factor, Junctional Adhesion Molecule-A, and Integrin B1 to drive self-renewal in glioblastoma
组织因子、连接粘附分子 A 和整合素 B1 之间的相互作用驱动胶质母细胞瘤的自我更新
  • 批准号:
    10331881
  • 财政年份:
    2020
  • 资助金额:
    $ 45.64万
  • 项目类别:
Interaction between Tissue Factor, Junctional Adhesion Molecule-A, and Integrin B1 to drive self-renewal in glioblastoma
组织因子、连接粘附分子 A 和整合素 B1 之间的相互作用驱动胶质母细胞瘤的自我更新
  • 批准号:
    10554404
  • 财政年份:
    2020
  • 资助金额:
    $ 45.64万
  • 项目类别:
The relationship between cell adhesion molecule 2 (Cadm2), sex and developmental age in cannabis-induced behavioural and neurobiological consequences
细胞粘附分子 2 (Cadm2)、性别和发育年龄在大麻引起的行为和神经生物学后果中的关系
  • 批准号:
    548146-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 45.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了