ITR: Physics-Based Modeling of Plastic Flow that Couples Atomistics of Unit Processes with Macroscopic Simulations

ITR:基于物理的塑性流动建模,将单元过程的原子性与宏观模拟相结合

基本信息

  • 批准号:
    0219243
  • 负责人:
  • 金额:
    $ 41.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-15 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

This is a grant funded in response to a (small) proposal submitted to the Information Technology Research (ITR) Initiative. The research will be done in collaboration with groups at Lawrence Livermore National Laboratory (LLNL) and Oxford University (England). Three-dimensional simulations are increasingly providing a powerful information-based approach to both material processing and the design and manufacturing of components that support a wide range of technologies. The objective of this research, which focuses on phenomena that involve large plastic deformations of metallic materials, is to develop a physics-based methodology for accurate modeling. At the overall system level, i.e., microstructural in the case of materials processing or components under complex loading, both Lagrangian and Arbitrary Lagrangian-Eulerian (ALE) finite element implementations are the computational basis of most software. However, unique unit processes that arise at atomic and molecular scales often control critical phenomena, and this is where many models are significantly deficient. In particular, nearly all inelastic simulation codes are limited to a narrow class of crystalline materials, namely those that are close-packed which primarily includes face-centered-cubic (fcc) materials. There is a challenge to develop accurate models for a broader range of engineering materials and to adapt these models into current large-scale finite element, hydrodynamic, and dislocation dynamics codes. The focus of this research is on the development of multiscale models and algorithms for the accurate and verifiable simulation of the deformation behavior of metallic materials possessing complex - non-planar - dislocation core structures. The research focuses on the relationship between the three-dimensional atomic configurations of defects, their mobility, and macroscopic plastic flow. The multiscale methodologies to be developed will be applicable to many areas, including problems in nanotechnology. The principal goals are: (1) to develop a rigorous methodology to link theories at scales ranging from electronic and atomic through mesoscale and macroscopic; (2) to develop physically-based continuum constitutive relations that account for complex phenmonea arising from non-planar dislocation cores; and, (3) to explore the effects of such defects on critical phenomena such as strain localization and fracture. We will consider a range of technologically important materials from different crystal classes and under conditions that arise in both material processing and in components subjected to mechanical loading.The algorithms to be developed will be ready for installation into large-scale finite element codes, e.g., Abaqus, both for polycrystals in nanoscale regimes and macroscopic components. Although the structure of the constitutive relations will be significantly different from those currently in use, implementation in massively parallel codes will be straightforward. %%%This is a grant funded in response to a (small) proposal submitted to the Information Technology Research (ITR) Initiative. The research will be done in collaboration with groups at Lawrence Livermore National Laboratory (LLNL) and Oxford University (England). The research focuses on the relationship between the three-dimensional atomic configurations of defects, their mobility, and macroscopic plastic flow in metallic materials. The multiscale methodologies to be developed will be applicable to many areas, including problems in nanotechnology. The principal goals are: (1) to develop a rigorous methodology to link theories at scales ranging from electronic and atomic through mesoscale and macroscopic; (2) to develop physically-based continuum constitutive relations that account for complex phenmonea arising from non-planar dislocation cores; and, (3) to explore the effects of such defects on critical phenomena such as strain localization and fracture. We will consider a range of technologically important materials from different crystal classes and under conditions that arise in both material processing and in components subjected to mechanical loading.***
这是一项赠款,用于响应提交给信息技术研究(ITR)倡议的(小)提案。 这项研究将与劳伦斯利弗莫尔国家实验室(LLNL)和牛津大学(英格兰)的团队合作完成。 三维模拟越来越多地为材料加工以及支持各种技术的组件的设计和制造提供了强大的基于信息的方法。 这项研究的目的,它的重点是现象,涉及金属材料的大塑性变形,是开发一个基于物理的方法,精确建模。 在整个系统级,即,在材料处理或复杂载荷下的部件的情况下,拉格朗日和任意拉格朗日-欧拉(ALE)有限元实现是大多数软件的计算基础。 然而,在原子和分子尺度上出现的独特单元过程通常控制关键现象,这就是许多模型存在显着缺陷的地方。 特别是,几乎所有的非弹性模拟代码仅限于一类狭窄的晶体材料,即那些主要包括面心立方(fcc)材料的紧密堆积。 有一个挑战,开发更广泛的工程材料的精确模型,并适应这些模型到目前的大规模有限元,流体动力学和位错动力学代码。 本研究的重点是发展多尺度模型和算法,用于精确和可验证的模拟具有复杂非平面位错核结构的金属材料的变形行为。研究的重点是三维原子结构的缺陷,他们的流动性,和宏观塑性流动之间的关系。 将开发的多尺度方法将适用于许多领域,包括纳米技术问题。 主要目标是:(1)发展一套严谨的方法,将电子、原子、介观和宏观尺度的理论联系起来;(2)发展基于物理的连续本构关系,解释非平面位错核产生的复杂现象;(3)探索这些缺陷对应变局部化和断裂等关键现象的影响。 我们将考虑一系列来自不同晶体类别的技术上重要的材料,以及在材料加工和承受机械载荷的组件中出现的条件。要开发的算法将准备安装到大规模有限元代码中,例如,Abaqus,无论是在纳米级制度和宏观成分的多晶体。 虽然本构关系的结构与目前使用的结构有很大的不同,但在大规模并行代码中的实现将是简单的。 %这是一项资助,以响应提交给信息技术研究(ITR)倡议的(小)提案。 这项研究将与劳伦斯利弗莫尔国家实验室(LLNL)和牛津大学(英格兰)的团队合作完成。 研究的重点是缺陷的三维原子构型,它们的流动性和金属材料中的宏观塑性流动之间的关系。 将开发的多尺度方法将适用于许多领域,包括纳米技术问题。 主要目标是:(1)发展一套严谨的方法,将电子、原子、介观和宏观尺度的理论联系起来;(2)发展基于物理的连续本构关系,解释非平面位错核产生的复杂现象;(3)探索这些缺陷对应变局部化和断裂等关键现象的影响。 我们将考虑来自不同晶体类别的一系列技术上重要的材料,以及在材料加工和承受机械载荷的组件中出现的条件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Bassani其他文献

John Bassani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Bassani', 18)}}的其他基金

Controlling Adhesion Between Stiff Surfaces by Tailoring Interface Geometry
通过定制界面几何形状控制刚性表面之间的粘附力
  • 批准号:
    1761726
  • 财政年份:
    2018
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Mechano-Chemical Coupling in the Adhesion of Thin Shell Structures: Transitions Between Weakly- and Well- Bonded States
薄壳结构粘合中的机械化学耦合:弱键合态和良好键合态之间的转变
  • 批准号:
    0900058
  • 财政年份:
    2009
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
Non-Associated Plastic Flow of Ductile Single Crystals
延性单晶的非缔合塑性流动
  • 批准号:
    9900131
  • 财政年份:
    2000
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing grant
Relationship Between Atomic and Continuum Properties of Interfaces and Free Surfaces
界面和自由表面的原子性质和连续性质之间的关系
  • 批准号:
    9412887
  • 财政年份:
    1994
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing grant
Control of Microstructure Against Strain Localization During Deformation Processing
变形加工过程中微观结构对应变局部化的控制
  • 批准号:
    9202513
  • 财政年份:
    1992
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Relationship Between Atomic Structure and Mechanical Properties of Interfaces and Free Surfaces
原子结构与界面和自由表面力学性能之间的关系
  • 批准号:
    9112196
  • 财政年份:
    1991
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing grant
Presidential Young Investigator Award: Finite-Strain Deformation of Polymers
总统青年研究员奖:聚合物的有限应变变形
  • 批准号:
    8352172
  • 财政年份:
    1984
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
Theory of Creep Crack Growth: Transient Effects (Materials Research)
蠕变裂纹扩展理论:瞬态效应(材料研究)
  • 批准号:
    8406556
  • 财政年份:
    1984
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Physics B
  • 批准号:
    11224806
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese physics B
  • 批准号:
    11024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

The chemistry and device physics of organic solar cells based on non-fullerene acceptors
基于非富勒烯受体的有机太阳能电池的化学和器件物理
  • 批准号:
    2910282
  • 财政年份:
    2024
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Studentship
Improving Typhoon Track Forecasts through Physics-Based Bias Correction
通过基于物理的偏差校正改进台风路径预报
  • 批准号:
    23H01665
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
CAREER: An Integrated Framework for Resilience Analytics: From Physics-based Modeling of Building Components to Dynamics of Community Level Recovery
职业:弹性分析的综合框架:从基于物理的建筑组件建模到社区层面恢复的动态
  • 批准号:
    2347722
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Understanding surface-to-bed meltwater pathways across the Greenland Ice Sheet using machine-learning and physics-based models
合作研究:NSFGEO-NERC:使用机器学习和基于物理的模型了解格陵兰冰盖的地表到床层融水路径
  • 批准号:
    2235052
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
  • 批准号:
    2243776
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
  • 批准号:
    2243775
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery
职业:结合机器学习和基于物理的建模方法来加速科学发现
  • 批准号:
    2239175
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311087
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311086
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了