Modeling, Analysis, and Diagnostics of High Strength-to-Weight Wind Turbine Blades Using Tensegrity Principles

使用张拉整体原理对高强度重量比风力涡轮机叶片进行建模、分析和诊断

基本信息

项目摘要

Access to affordable, reliable, and sustainable energy across the globe is one of the 2030 targets of the United Nations. This requires a substantial increase in the share of renewable energy within the global energy mix. Wind is a prominent part of the solution if the world is to achieve such a target. To meet the 2030 target, the industry is moving to off-shore sites where larger wind-turbines can be deployed. As the rotors become larger, the blades become longer which poses some challenges. The industry has relied on improvements in blade structural design, manufacturing processes and material properties to meet the requirements for longer blades that remain light-weight, strong and stiff. Currently, material performance criteria identify fiber-reinforced polymer composites as the prime candidate for rotor blades. However, use of such material presents several challenges in design analysis, manufacturing, vibration control, structural health assessment, and transportation. In this effort, the investigators will develop new theoretical and computational tools for designing large turbine blades using tensegrity principles, which will significantly alleviate some of the above described engineering challenges. It is expected that the proposed design framework will be disruptive and lead to much more efficient design of next generation wind-turbine blades. The tensegrity-based design of wind-turbine blades has several advantages including accurate modeling, aero-elastic tailoring, optimal sensing for structural health monitoring, and ability to contract to a smaller form factor for easy deployability. The proposed research will alleviate some of the pressing technical and scientific challenges in the wind energy community, and provide a feasible path to address the proposed expansion from 5 GW in 2012 to 150 GW in 2030. The scientific problems that will be addressed in this research also present a new systems engineering perspective, which is missing in current engineering practices. The state-of-the-art in each component technology (physics/data based modeling, sensing, actuation, control, computation) is quite matured. However, a systems perspective is missing. Typically these systems are first built and modeled, sensing and actuation architecture (including precision) is decided in an adhoc manner, followed by the design of the estimation/control law that is constrained by this adhoc sensing and control architecture. In this effort, we pursue an integrated approach for design of the structure (mass properties, topology, dynamics), and the sensing architecture (for optimal health monitoring), which provides a new perspective with strong theoretical foundations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在地球仪范围内获得负担得起、可靠和可持续的能源是联合国2030年的目标之一。这就需要大幅度增加可再生能源在全球能源组合中的份额。如果世界要实现这一目标,风能是解决方案的重要组成部分。为了实现2030年的目标,该行业正在转向可以部署更大风力涡轮机的离岸地点。随着转子变得更大,叶片变得更长,这带来了一些挑战。 该行业一直依赖于叶片结构设计、制造工艺和材料性能的改进,以满足对保持轻质、坚固和刚性的较长叶片的要求。目前,材料性能标准将纤维增强聚合物复合材料确定为转子叶片的主要候选材料。然而,这种材料的使用在设计分析、制造、振动控制、结构健康评估和运输方面提出了一些挑战。在这项工作中,研究人员将开发新的理论和计算工具,用于使用张拉整体原理设计大型涡轮机叶片,这将大大减轻上述工程挑战。预计所提出的设计框架将是破坏性的,并导致下一代风力涡轮机叶片的更有效的设计。风力涡轮机叶片的基于张拉整体的设计具有几个优点,包括精确建模、气动弹性剪裁、用于结构健康监测的最佳感测以及收缩到较小形状因子以便于部署的能力。拟议的研究将缓解风能界面临的一些紧迫的技术和科学挑战,并为解决从2012年的5吉瓦到2030年的150吉瓦的拟议扩张提供可行的途径。在这项研究中将解决的科学问题也提出了一个新的系统工程的角度来看,这是在目前的工程实践中缺失。每个组件技术(基于物理/数据的建模,传感,驱动,控制,计算)的最新技术已经相当成熟。然而,缺乏系统的视角。通常,这些系统首先被构建和建模,感测和致动架构(包括精度)以自组织方式被决定,随后是由该自组织感测和控制架构约束的估计/控制律的设计。在这项工作中,我们追求结构(质量特性,拓扑结构,动力学)和传感架构(用于最佳健康监测)的综合设计方法,这提供了一个具有强大理论基础的新视角。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-driven Solution of Stochastic Differential Equations Using Maximum Entropy Basis Functions
使用最大熵基函数的随机微分方程的数据驱动解
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deshpande, Vedang;Bhattacharya, Raktim
  • 通讯作者:
    Bhattacharya, Raktim
Sparse Sensing Architectures with Optimal Precision for Tracking Multi-agent Systems in Sensing-denied Environments
  • DOI:
    10.23919/acc50511.2021.9483377
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vedang M. Deshpande;R. Bhattacharya
  • 通讯作者:
    Vedang M. Deshpande;R. Bhattacharya
Surrogate Modeling of Dynamics From Sparse Data Using Maximum Entropy Basis Functions
使用最大熵基函数从稀疏数据进行动力学代理建模
  • DOI:
    10.23919/acc45564.2020.9147384
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deshpande, Vedang M.;Bhattacharya, Raktim
  • 通讯作者:
    Bhattacharya, Raktim
Robust Kalman Filtering With Probabilistic Uncertainty in System Parameters
  • DOI:
    10.1109/lcsys.2020.3001490
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Sunsoo Kim;Vedang M. Deshpande;R. Bhattacharya
  • 通讯作者:
    Sunsoo Kim;Vedang M. Deshpande;R. Bhattacharya
Sparse Sensing and Optimal Precision: Robust H∞ Optimal Observer Design with Model Uncertainty
稀疏传感和最佳精度:具有模型不确定性的鲁棒 H 最佳观测器设计
  • DOI:
    10.23919/acc50511.2021.9483378
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deshpande, Vedang M.;Bhattacharya, Raktim
  • 通讯作者:
    Bhattacharya, Raktim
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raktim Bhattacharya其他文献

Quantifying Maximum Actuator Degradation for a Given H2/H∞ Performance with Full-State Feedback Control
通过全状态反馈控制量化给定 H2/H∞ 性能的最大执行器退化
  • DOI:
    10.48550/arxiv.2403.01333
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hrishav Das;Eliot Nychka;Raktim Bhattacharya
  • 通讯作者:
    Raktim Bhattacharya
Optimal State Estimation in the Presence of Non-Gaussian Uncertainty via Wasserstein Distance Minimization
通过 Wasserstein 距离最小化存在非高斯不确定性时的最优状态估计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Himanshu Prabhat;Raktim Bhattacharya
  • 通讯作者:
    Raktim Bhattacharya
Implementation of Control Algorithms in an Environment of Dynamically Scheduled CPU Time Using Balanced Truncation
使用平衡截断在动态调度CPU时间环境中实现控制算法
  • DOI:
    10.2514/6.2002-4758
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raktim Bhattacharya;Gary J. Balas
  • 通讯作者:
    Gary J. Balas
A Convex Optimization Framework for Computing Robustness Margins of Kalman Filters
计算卡尔曼滤波器鲁棒性裕度的凸优化框架
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Himanshu Prabhat;Raktim Bhattacharya
  • 通讯作者:
    Raktim Bhattacharya

Raktim Bhattacharya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raktim Bhattacharya', 18)}}的其他基金

I-Corps: Multi-axis Deformable Sensor/Actuator System
I-Corps:多轴可变形传感器/执行器系统
  • 批准号:
    1744711
  • 财政年份:
    2017
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
CCF: SHF: EAGER:Collaborative:Asynchronous Algorithms for Exascale Computing Systems
CCF:SHF:EAGER:协作:百亿亿次计算系统的异步算法
  • 批准号:
    1349100
  • 财政年份:
    2013
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
CSR: Small: Uncertainty Management in Real-Time Embedded Control Systems
CSR:小:实时嵌入式控制系统中的不确定性管理
  • 批准号:
    1016299
  • 财政年份:
    2010
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Continuing Grant
CSR---CPS: Design of Robust and Energy Efficient Cyber-Physical Systems Using Dynamical Systems and Control Theory
CSR---CPS:利用动力系统和控制理论设计鲁棒且节能的信息物理系统
  • 批准号:
    0720541
  • 财政年份:
    2007
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Causal Analysis through Formal Reasoning and AI for Cancer Diagnostics
EAGER:通过形式推理和人工智能进行癌症诊断的因果分析
  • 批准号:
    2320050
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
ERI: Hydraulic Cylinder Diagnostics Using Nonlinear Inverse Model Estimation and Frequency Domain Analysis
ERI:使用非线性逆模型估计和频域分析进行液压缸诊断
  • 批准号:
    2301535
  • 财政年份:
    2023
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Standard Grant
Early diagnostics of hearing loss based on numerical analysis and measurement of the emitted sound by auditory sensory cell
基于听觉感觉细胞发出声音的数值分析和测量的听力损失早期诊断
  • 批准号:
    22K18183
  • 财政年份:
    2022
  • 资助金额:
    $ 37.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Accessible FSHD diagnostics through epigenetic analysis
通过表观遗传分析进行 FSHD 诊断
  • 批准号:
    10556422
  • 财政年份:
    2022
  • 资助金额:
    $ 37.47万
  • 项目类别:
Accessible FSHD diagnostics through epigenetic analysis
通过表观遗传分析进行 FSHD 诊断
  • 批准号:
    10391097
  • 财政年份:
    2022
  • 资助金额:
    $ 37.47万
  • 项目类别:
Multidimensional analysis using sensor arrays and deep learning for high-precision diagnostics
使用传感器阵列和深度学习进行多维分析以实现高精度诊断
  • 批准号:
    563228-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 37.47万
  • 项目类别:
    University Undergraduate Student Research Awards
Noninvasive bladder cancer diagnostics via machine learning analysis of nanoscale surface images of epithelial cells extracted from voided urine samples
通过机器学习分析从排泄尿液样本中提取的上皮细胞的纳米级表面图像进行非侵入性膀胱癌诊断
  • 批准号:
    10454232
  • 财政年份:
    2021
  • 资助金额:
    $ 37.47万
  • 项目类别:
Noninvasive bladder cancer diagnostics via machine learning analysis of nanoscale surface images of epithelial cells extracted from voided urine samples
通过机器学习分析从排泄尿液样本中提取的上皮细胞的纳米级表面图像进行非侵入性膀胱癌诊断
  • 批准号:
    10669124
  • 财政年份:
    2021
  • 资助金额:
    $ 37.47万
  • 项目类别:
Noninvasive bladder cancer diagnostics via machine learning analysis of nanoscale surface images of epithelial cells extracted from voided urine samples
通过机器学习分析从排泄尿液样本中提取的上皮细胞的纳米级表面图像进行非侵入性膀胱癌诊断
  • 批准号:
    10276838
  • 财政年份:
    2021
  • 资助金额:
    $ 37.47万
  • 项目类别:
SERS diagnostics platform for liquid bioapsy analysis of tumor-associated exosomes
用于肿瘤相关外泌体液体活检分析的 SERS 诊断平台
  • 批准号:
    9973569
  • 财政年份:
    2020
  • 资助金额:
    $ 37.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了