CIF: Medium: Collaborative Research: New Frontiers in Polar Coding: 5G and Beyond
CIF:媒介:协作研究:Polar 编码的新前沿:5G 及以上
基本信息
- 批准号:1763348
- 负责人:
- 金额:$ 57.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since the first mobile phones became available in the 1980s, four distinct "generations" of wireless networks have been deployed to support reliable transmission of ever-increasing volumes of data to a growing number of users. What makes such reliable transmission of information possible are error-correcting codes, first conceived by Claude Shannon over 60 years ago. Polar coding is a key new error-correction technology introduced in the fifth wireless generation, known as 5G, that is currently being developed and standardized. Thus, soon enough, consumers the world over will all be using polar codes whenever making a phone call or accessing the Internet on a mobile device. Polar codes provably achieve the fundamental limits of communication established by Shannon in 1948, with low encoding and decoding complexity. Nevertheless, numerous challenges must be overcome in order to realize the full potential of polar coding in wireless communications. This project addresses these challenges to facilitate successful deployment of polar codes in 5G systems, while investigating fundamental problems in polar coding that lie beyond the 5G time horizon. These problems include polarization for time-varying channels and polar coding for channels with deletions. The results from this part of the investigation will contribute to the foundations of error-correction coding theory, and will also have an impact on adjacent scientific disciplines that are influenced by the polar-coding paradigm.The discovery of channel polarization and polar codes is universally recognized as an historic breakthrough in coding theory. For short block lengths, polar codes under cyclic-redundancy-check-aided successive-cancellation list decoding are currently the best known coding scheme for binary-input Gaussian channels. Due to this and other considerations, 3GPP has decided to incorporate polar codes in the 5G wireless communications standard. The overarching goal in this project is to explore new frontiers in polar coding, thereby fundamentally advancing the current state-of-the-art in the field. Part of the research aims for immediately relevance to successful deployment of polar codes in 5G, whereas other parts focus on key theoretical problems in polar coding that lie beyond the 5G time-horizon. The specific objectives in this project are as follows: (1) Attain the gains of cyclic-redundancy-check-aided polar list-decoding with significantly lower complexity; (2) Construct practical universal polar codes that are not channel-dependent and provide near-optimal finite-length performance; (3) Develop code-domain multiple access techniques based on polar codes to enable massive connectivity; (4) Design and evaluate polar coding schemes for extended classes of channels, going well beyond the original memoryless and stationary set-up; (5) Extend the polarization paradigm and design polar codes for channels with deletions; (6) Develop a full-scale efficient, low-latency, and low-power system-on-chip implementation of polar list decoders. This project is a natural outgrowth of extensive and transformative prior work carried out by the investigators in polar coding.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自从第一批移动的电话在20世纪80年代变得可用以来,已经部署了四个不同的“代”无线网络,以支持向越来越多的用户可靠地传输不断增加的数据量。使这种可靠的信息传输成为可能的是纠错码,这是Claude Shannon在60多年前首次提出的。极化编码是第五代无线通信(称为5G)中引入的一种关键的新纠错技术,目前正在开发和标准化。因此,很快,世界各地的消费者将在移动终端上打电话或访问互联网时都使用极化码。极化码可证明实现了香农在1948年建立的通信的基本限制,具有低编码和解码复杂度。然而,为了实现极化编码在无线通信中的全部潜力,必须克服许多挑战。该项目旨在解决这些挑战,以促进极化码在5G系统中的成功部署,同时研究极化码在5G时间范围之外的基本问题。这些问题包括时变信道的极化和删除信道的极化编码。这一部分的研究成果将有助于纠错编码理论的建立,也将对受极化编码范式影响的相邻学科产生影响。信道极化和极化码的发现被公认为编码理论的历史性突破。对于短块长度,在循环冗余校验辅助的连续消除列表解码下的极化码是目前用于二进制输入高斯信道的最佳已知编码方案。由于这一点和其他考虑,3GPP决定将极化码纳入5G无线通信标准。该项目的总体目标是探索极性编码的新领域,从而从根本上推进该领域的当前最先进水平。部分研究旨在直接与5G中极化码的成功部署相关,而其他部分则专注于极化编码中超出5G时间范围的关键理论问题。该项目的具体目标如下:(1)以显著降低的复杂度获得循环冗余校验辅助的极化列表解码的增益;(2)构造实用的通用极化码,其不依赖于信道并且提供接近最优的有限长度性能;(3)开发基于极化码的码域多址技术,以实现大规模连接;(4)为扩展类信道设计和评估极化编码方案,远远超出原始的无记忆和固定设置;(5)扩展极化范式,为删除信道设计极化码;(6)开发全尺寸高效、低延迟和低功耗的极化列表解码器片上系统实现。该项目是研究人员在极坐标编码领域开展的广泛和变革性工作的自然产物。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polar Coded Repetition for Low-Capacity Channels
低容量通道的极性编码重复
- DOI:10.1109/itw46852.2021.9457589
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Abbasi, Fariba;Mahdavifar, Hessam;Viterbo, Emanuele
- 通讯作者:Viterbo, Emanuele
Physical Layer Secret Key Generation in Static Environments
- DOI:10.1109/tifs.2020.2974621
- 发表时间:2020-01-01
- 期刊:
- 影响因子:6.8
- 作者:Aldaghri, Nasser;Mahdavifar, Hessam
- 通讯作者:Mahdavifar, Hessam
KO codes: inventing nonlinear encoding and decoding for reliable wireless communication via deep-learning
- DOI:
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Ashok Vardhan Makkuva;Xiyang Liu;Mohammad Vahid Jamali;Hessam Mahdavifar;Sewoong Oh;P. Viswanath
- 通讯作者:Ashok Vardhan Makkuva;Xiyang Liu;Mohammad Vahid Jamali;Hessam Mahdavifar;Sewoong Oh;P. Viswanath
Hybrid Non-Binary Repeated Polar Codes
- DOI:10.1109/twc.2022.3159807
- 发表时间:2021-06
- 期刊:
- 影响因子:10.4
- 作者:Fariba Abbasi;Hessam Mahdavifar;E. Viterbo
- 通讯作者:Fariba Abbasi;Hessam Mahdavifar;E. Viterbo
Analog Secret Sharing With Applications to Private Distributed Learning
模拟秘密共享与私有分布式学习的应用
- DOI:10.1109/tifs.2022.3173417
- 发表时间:2022
- 期刊:
- 影响因子:6.8
- 作者:Soleymani, Mahdi;Mahdavifar, Hessam;Avestimehr, A. Salman
- 通讯作者:Avestimehr, A. Salman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hessam Mahdavifar其他文献
Compound polar codes
复合极码
- DOI:
10.1109/ita.2013.6502955 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hessam Mahdavifar;Mostafa El;Jungwon Lee;Inyup Kang - 通讯作者:
Inyup Kang
Asymptotically optimal sticky-insertion-correcting codes with efficient encoding and decoding
具有高效编码和解码的渐近最优粘性插入校正码
- DOI:
10.1109/isit.2017.8007016 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hessam Mahdavifar;A. Vardy - 通讯作者:
A. Vardy
Matrix Completion over Finite Fields: Bounds and Belief Propagation Algorithms
有限域上的矩阵补全:界限和置信传播算法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Soleymani;Qiang Liu;Hessam Mahdavifar;L. Balzano - 通讯作者:
L. Balzano
Projective Systematic Authentication via Reed-Muller Codes
通过 Reed-Muller 码进行投影系统认证
- DOI:
10.48550/arxiv.2404.09088 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hsuan;Hessam Mahdavifar - 通讯作者:
Hessam Mahdavifar
Dimensions of Channel Coding: From Theory to Algorithms to Applications
信道编码的维度:从理论到算法到应用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
T. Etzion;Paul H. Siegel;Han Mao Kiah;Hessam Mahdavifar;Farzad Parvaresh;Moshe Schwartz;I. Tal;Eitan Yaakobi;Xinmiao Zhang - 通讯作者:
Xinmiao Zhang
Hessam Mahdavifar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hessam Mahdavifar', 18)}}的其他基金
CAREER: Coding Subspaces: Error Correction, Compression and Applications
职业:编码子空间:纠错、压缩和应用
- 批准号:
2415440 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Designing Plotkin Transform Codes via Machine Learning
协作研究:CIF:小型:通过机器学习设计 Plotkin 转换代码
- 批准号:
2312752 - 财政年份:2023
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
CAREER: Coding Subspaces: Error Correction, Compression and Applications
职业:编码子空间:纠错、压缩和应用
- 批准号:
1941633 - 财政年份:2020
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Communications in Ultra-Low-Rate Regime: Fundamental Limits, Code Constructions, and Applications
CIF:小型:协作研究:超低速率制度下的通信:基本限制、代码构造和应用
- 批准号:
1909771 - 财政年份:2019
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312229 - 财政年份:2023
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
- 批准号:
2312666 - 财政年份:2023
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312228 - 财政年份:2023
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
- 批准号:
2312547 - 财政年份:2023
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant














{{item.name}}会员




