Global Existence and Computer-Assisted Proofs of Singularities in Incompressible Fluids
不可压缩流体奇点的整体存在性和计算机辅助证明
基本信息
- 批准号:1763356
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The dynamics of free surfaces moving with incompressible fluids occurs in many problems in engineering and science. For short times, the behaviour of solutions is understood in many cases. However, the theory of existence (or not) of singularities, and long term behavior of solutions, is far from well-developed. An example of singularities are the breaking of waves, the formation of a tornado or the splash of a drop.This project takes two directions: on the one hand it addresses the fundamental question of whether there exists breakdown of smooth solutions in finite time, paying particular attention to the type of breakdown and to the quantity that blows up and on the other the existence of global solutions that exist for all time. Two equations are considered: the generalized surface quasi-geostrophic (gSQG) equation- both in the smooth and the patch case -, a family of models which interpolates between the surface quasi-geostrophic (SQG) equation and the Euler vorticity equation; and the two dimensional free boundary Euler equations. In order to carry out the project, a combination of techniques among an interdisciplinary tool set is required. These include, but are not restricted to, mathematical analysis, high-performance numerical computing, and rigorous computations leading to computer-assisted proofs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在工程和科学中,许多问题都涉及到与不可压缩流体一起运动的自由表面的动力学问题。在很短的时间内,溶液的行为在许多情况下都是可以理解的。然而,奇点存在(或不存在)的理论,以及长期行为的解决方案,是远远不够发达。奇点的一个例子是波浪的破碎,龙卷风的形成或水滴的飞溅。这个项目有两个方向:一方面,它解决了在有限时间内是否存在光滑解的破裂的基本问题,特别注意破裂的类型和破裂的数量,另一方面,存在的全局解存在于所有时间。考虑两个方程:广义表面准地转(gSQG)方程--在光滑和斑块情况下--是在表面准地转(SQG)方程和欧拉涡度方程之间插值的一类模型;以及二维自由边界欧拉方程。为了执行该项目,需要在一个跨学科的工具集的技术相结合。这些包括但不限于数学分析、高性能数值计算和导致计算机辅助证明的严格计算。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SYMMETRY IN STATIONARY AND UNIFORMLY ROTATING SOLUTIONS OF ACTIVE SCALAR EQUATIONS
- DOI:10.1215/00127094-2021-0002
- 发表时间:2021-09-15
- 期刊:
- 影响因子:2.5
- 作者:Gomez-Serrano, Javier;Park, Jaemin;Yao, Yao
- 通讯作者:Yao, Yao
Computer-assisted proofs in PDE: a survey
- DOI:10.1007/s40324-019-00186-x
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:J. Gómez-Serrano
- 通讯作者:J. Gómez-Serrano
On the existence of stationary patches
- DOI:10.1016/j.aim.2018.11.012
- 发表时间:2018-07
- 期刊:
- 影响因子:1.7
- 作者:Javier G'omez-Serrano
- 通讯作者:Javier G'omez-Serrano
Splash Singularities for the Free Boundary Navier-Stokes Equations
- DOI:10.1007/s40818-019-0068-1
- 发表时间:2015-04
- 期刊:
- 影响因子:2.8
- 作者:A. Castro;D. Córdoba;C. Fefferman;F. Gancedo;J. Gómez-Serrano
- 通讯作者:A. Castro;D. Córdoba;C. Fefferman;F. Gancedo;J. Gómez-Serrano
Any three eigenvalues do not determine a triangle
任何三个特征值都不能确定三角形
- DOI:10.1016/j.jde.2020.11.002
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Gómez-Serrano, Javier;Orriols, Gerard
- 通讯作者:Orriols, Gerard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandru Ionescu其他文献
On the asymptotic behavior of solutions to the Vlasov-Poisson system
- DOI:
https://doi.org/10.1093/imrn/rnab155 - 发表时间:
- 期刊:
- 影响因子:
- 作者:
Alexandru Ionescu;Benoit Pausader;Xuecheng Wang;Klaus Widmayer - 通讯作者:
Klaus Widmayer
Business Versus Complexity
业务与复杂性
- DOI:
10.1016/s2212-5671(15)01405-7 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Harry Hosney Zurub;Alexandru Ionescu;Natalia Bob - 通讯作者:
Natalia Bob
Windows® Internals, Part 1: Covering Windows Server® 2008 R2 and Windows 7
Windows® 内部结构,第 1 部分:涵盖 Windows Server® 2008 R2 和 Windows 7
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Russinovich;David A. Solomon;Alexandru Ionescu - 通讯作者:
Alexandru Ionescu
Windows Internals, Part 2: Covering Windows Server 2008 R2 and Windows 7 (Windows Internals)
Windows 内部结构,第 2 部分:涵盖 Windows Server 2008 R2 和 Windows 7(Windows 内部结构)
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Russinovich;David A. Solomon;Alexandru Ionescu - 通讯作者:
Alexandru Ionescu
Alexandru Ionescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandru Ionescu', 18)}}的其他基金
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245228 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Stability of solitons and long-term dynamics of fluids
孤子的稳定性和流体的长期动力学
- 批准号:
2007008 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Long Term Regularity of Solutions of Fluid Models
流体模型解的长期规律性
- 批准号:
1600028 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Conference on Analysis and Geometry; Princeton, NJ; January 26-29, 2016
分析与几何会议;
- 批准号:
1565353 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1463753 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Global solutions of semilinear and quasilinear dispersive equations
半线性和拟线性色散方程的全局解
- 批准号:
1265818 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Carleman estimates with nonconvex weights and Riesz rearrangement inequalities
使用非凸权重和 Riesz 重排不等式进行 Carleman 估计
- 批准号:
0407090 - 财政年份:2004
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Real-variable methods on symmetric spaces and Schrodinger operators
对称空间上的实变量方法和薛定谔算子
- 批准号:
0302622 - 财政年份:2002
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Real-variable methods on symmetric spaces and Schrodinger operators
对称空间上的实变量方法和薛定谔算子
- 批准号:
0100021 - 财政年份:2001
- 资助金额:
$ 12万 - 项目类别:
Continuing grant
相似海外基金
RII Track-4:NSF: Assessing the Impact of Jovian Planets on the Existence of Potentially Habitable Planets
RII Track-4:NSF:评估木星行星对潜在宜居行星存在的影响
- 批准号:
2327072 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Positing or Predicating? Existence after Kant
定位还是预测?
- 批准号:
AH/Y007506/1 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Research Grant
The existence and abundance of small bases of permutation groups
排列群小基的存在性和丰度
- 批准号:
DE230100579 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Discovery Early Career Researcher Award
The research on the stability of the density functions for the existence probability of orbits
轨道存在概率密度函数的稳定性研究
- 批准号:
23K03185 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Study on Existence and Effectiveness of Stakeholder-oriented Farm Businesses in Less-favoured Areas in Japan
日本欠发达地区利益相关者导向农场企业的存在性和有效性的实证研究
- 批准号:
23K14032 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative: BEE: Ecological and evolutionary processes affecting the co-existence of close relatives
协作:BEE:影响近亲共存的生态和进化过程
- 批准号:
2316708 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Development of evaluation criteria and decision-making measures for the existence or non-existence of the Local Railroads
制定地方铁路存在或不存在的评估标准和决策措施
- 批准号:
23K04288 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On new generalizations of Einstein-Kaehler metrics: relationships between their existence and stability
关于爱因斯坦-凯勒度量的新概括:它们的存在与稳定性之间的关系
- 批准号:
23K03094 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
2247637 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant