Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics

数学物理中双曲微分方程解的存在性

基本信息

  • 批准号:
    2247637
  • 负责人:
  • 金额:
    $ 47.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This project is aimed at understanding the large time behavior of solutions of Einstein's equations for the gravitational field under the influence of various matter fields, such as electromagnetism and fluids. The study of the asymptotic behavior and scattering of solutions are useful for the numerical relativity and physics communities. The mathematics developed as part of the project also helps analyze the data from gravitational wave detectors. Graduate students are trained as part of the project. It is expected that the simplified existence proofs for Einstein's equations and for the stability of black holes will make it easier for students to get started on research in mathematical relativity. The project is concerned with the problem of existence, asymptotic behavior, and scattering of global solutions of Einstein's equations and other field equations. One goal is to study the asymptotic behavior of small solutions of Einstein's equations with various matter fields. The Principal Investigator (PI) has identified a weak null condition that the nonlinear terms in Einstein’s equations and many other physical systems satisfy, and it is important to understand how this determines the asymptotic behavior. The matter fields propagate slower than the speed of light and are hence concentrated in the interior of the forward light cone. The PI discovered that the gravitational field has one part consisting of a wave that travels with the speed of light and one interior part that is a homogeneous decaying function. It is interesting to find out how matter interacts with gravity. The project is developing a new, more explicit, way to construct solutions backwards from scattering data at infinity. Using the explicit expressions, a compatibility condition that scattering data has to satisfy was identified and it would be interesting to find out whether it is sufficient for existence. It is important to be able to compute gravitational waveforms emitted from compact binary systems, such as two black holes colliding, from far away. Those waveforms are being used to identify such systems from the data from gravitational wave detectors. The PI’s formulation in harmonic coordinates is particularly suitable for this and is being used by his collaborators in numerical relativity. Another goal of the project is to study the stability of large solutions like stars or black holes. In particular, it is important to simplify and generalize the proofs involved in the recent work on the stability of black holes. The approach in this project is to first gain a better understanding for general simpler model wave equations close to a black hole.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在了解在电磁和流体等各种物质场影响下引力场爱因斯坦方程解的大时间行为。对解的渐近性态和散射性的研究对数值相对论和物理学都有重要意义。作为该项目一部分开发的数学也有助于分析引力波探测器的数据。作为该项目的一部分,对研究生进行培训。希望通过爱因斯坦方程和黑洞稳定性的简化证明,使学生更容易开始数学相对论的研究。 该项目关注的是爱因斯坦方程和其他场方程的整体解的存在性、渐近行为和散射问题。一个目标是研究爱因斯坦方程的小解的渐近行为与各种物质场。主要研究者(PI)已经确定了爱因斯坦方程和许多其他物理系统中的非线性项满足的弱零条件,理解这如何决定渐近行为是很重要的。物质场的传播速度比光速慢,因此集中在前向光锥的内部。PI发现,引力场有一部分由以光速传播的波组成,另一部分是均匀衰减函数。发现物质如何与引力相互作用是很有趣的。该项目正在开发一种新的,更明确的方法,从无穷远的散射数据向后构建解决方案。使用显式表达式,散射数据必须满足的兼容性条件被确定,它会是有趣的,找出它是否是足够的存在。重要的是要能够计算从紧凑的双星系统,如两个黑洞碰撞,从远处发出的引力波形。这些波形正被用来从引力波探测器的数据中识别这样的系统。PI在调和坐标系中的公式特别适合于此,并被他的合作者用于数值相对论。该项目的另一个目标是研究恒星或黑洞等大型解决方案的稳定性。特别重要的是,简化和推广最近关于黑洞稳定性的工作中所涉及的证明。该项目的方法是首先更好地理解接近黑洞的一般简单模型波动方程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hans Lindblad其他文献

A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro
瑞典克朗、美元和欧元的同步模型
  • DOI:
    10.2139/ssrn.981114
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Sellin;Hans Lindblad
  • 通讯作者:
    Hans Lindblad
Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition
满足零值条件或弱零值条件的半线性波动方程的无穷远散射
Blow-up for solutions of □u=|u|P with small initial data
Global solutions of nonlinear wave equations
A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time
  • DOI:
    10.1090/s0002-9939-03-07246-0
  • 发表时间:
    2002-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hans Lindblad
  • 通讯作者:
    Hans Lindblad

Hans Lindblad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hans Lindblad', 18)}}的其他基金

Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1500925
  • 财政年份:
    2015
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1101721
  • 财政年份:
    2011
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1249160
  • 财政年份:
    2011
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1237212
  • 财政年份:
    2011
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0801120
  • 财政年份:
    2008
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0500899
  • 财政年份:
    2005
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0200226
  • 财政年份:
    2002
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Continuing Grant
Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
非线性波动方程组解的存在性与扩展
  • 批准号:
    9970623
  • 财政年份:
    1999
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
数学科学:非线性波动方程组解的存在性和放大
  • 批准号:
    9623207
  • 财政年份:
    1996
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Existence and Blow-up of Solutions of Nonlinear Wave Equations
数学科学:非线性波动方程解的存在性与爆炸
  • 批准号:
    9306797
  • 财政年份:
    1993
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Standard Grant

相似海外基金

Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1500925
  • 财政年份:
    2015
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1101721
  • 财政年份:
    2011
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1249160
  • 财政年份:
    2011
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1237212
  • 财政年份:
    2011
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Continuing Grant
Studies on the sufficient conditions for the global existence of solutions to the exterior problems for nonlinear hyperbolic equations
非线性双曲方程外问题解全局存在的充分条件研究
  • 批准号:
    20540211
  • 财政年份:
    2008
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0801120
  • 财政年份:
    2008
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0500899
  • 财政年份:
    2005
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Continuing Grant
Existence and Stability of Non-classical Weak Solutions to Hyperbolic Conservation Laws
双曲守恒定律非经典弱解的存在性和稳定性
  • 批准号:
    15540221
  • 财政年份:
    2003
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0200226
  • 财政年份:
    2002
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了