SHF: Medium: Collaborative Research: Program Analytics: Using Trace Data for Localization, Explanation and Synthesis

SHF:媒介:协作研究:程序分析:使用跟踪数据进行本地化、解释和综合

基本信息

项目摘要

Formal program analyses have long held out the promise of lowering the cost ofcreating, maintaining and evolving programs. However, many crucial analysistasks, such as localizing the sources of errors or suggesting code repairs, areinherently ambiguous: there is no unique right answer. This ambiguityfundamentally restricts the wider adoption of formal tools by limiting users tothose with enough expertise to effectively use such ambiguous results. The keyinsight is that data-driven machine-learning approaches, which have provedsuccessful in other domains, can be applied to the data traces generated byprogrammers as they carry out development tasks. This research addresses thechallenge of ambiguity by extending classical program analysis into modernprogram analytics. This extension enhances classical symbolic methods withmodern data-driven approaches to collectively learn from fine-grained traces ofprogrammers interacting with compilers or analysis tools to iteratively modifyand fix software.The research systematically develops program analytics by pursuing researchalong two dimensions: language domains and programming tasks. First, it studiesdifferent language domains, from dynamically typed languages (Python), tostatically typed functional languages with contract systems (Haskell), tointeractive proof assistants (Coq). Second, it targets different programmingtasks, from localizing errors like null-dereferences, assertions or otherdynamic type failures, to static type errors, to completing or fixing code toeliminate an error or to obtain some desired functionality. This approach takesadvantage of a suite of new approaches that harness recent advances instatistical machine learning and fine-grained, domain specific programmerinteractions. These advantages allow the research to address the fundamentalproblem of ambiguity in classical program analysis. This has potential totransform software development by yielding a new generation of program analysistools that are efficient, applicable, and automatically customizable (e.g., to aparticular company, project, group or even individual).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
形式化程序分析长期以来一直承诺降低创建、维护和演化程序的成本。然而,许多关键的分析问题,如定位错误源或建议代码修复,本质上是模糊的:没有唯一的正确答案。这种模糊性从根本上限制了正式工具的广泛采用,因为它将用户限制在那些具有足够专业知识的人,以有效地使用这种模糊的结果。关键的见解是,数据驱动的机器学习方法,在其他领域已经证明是成功的,可以应用于程序员在执行开发任务时生成的数据跟踪。本研究通过将经典程序分析扩展到现代程序分析来解决模糊性的挑战。这种扩展增强了经典的符号方法与现代数据驱动的方法,共同学习细粒度的程序员与编译器或分析工具交互的痕迹,以迭代地修改和修复软件。该研究通过沿着两个维度进行研究来系统地开发程序分析:语言域和编程任务。首先,它研究了不同的语言领域,从动态类型语言(Python)到带有契约系统的静态类型函数语言(Haskell),再到交互式证明助手(Coq)。其次,它针对不同的编程任务,从本地化错误,如空解引用,断言或其他动态类型失败,到静态类型错误,完成或修复代码以消除错误或获得某些期望的功能。这种方法利用了一系列新方法,这些方法利用了统计机器学习和细粒度,特定领域程序员交互的最新进展。这些优点使研究能够解决经典程序分析中的模糊性问题。这有可能通过产生新一代高效、适用和可自动定制的程序分析工具来改变软件开发(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CirFix: Automated Hardware Repair and its Real-World Applications
  • DOI:
    10.1109/tse.2023.3269899
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Priscila Santiesteban;Yu Huang;Westley Weimer;Hammad Ahmad
  • 通讯作者:
    Priscila Santiesteban;Yu Huang;Westley Weimer;Hammad Ahmad
CirFix: automatically repairing defects in hardware design code
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Westley Weimer其他文献

Genetic Improvement @ ICSE 2020
遗传改良 @ ICSE 2020
  • DOI:
    10.1145/3417564.3417575
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Langdon;Westley Weimer;J. Petke;Erik M. Fredericks;Seongmin Lee;E. Winter;Michail Basios;Myra B. Cohen;Aymeric Blot;Markus Wagner;Bobby R. Bruce;S. Yoo;Simos Gerasimou;Oliver Krauss;Yu Huang;Michael C. Gerten
  • 通讯作者:
    Michael C. Gerten
Speeding Up Dataflow Analysis Using Flow-Insensitive Pointer Analysis
使用流不敏感指针分析加速数据流分析
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Adams;T. Ball;Manuvir Das;Sorin Lerner;S. Rajamani;Mark Seigle;Westley Weimer
  • 通讯作者:
    Westley Weimer
Relating Reading, Visualization, and Coding for New Programmers: A Neuroimaging Study
新程序员的阅读、可视化和编码相关性:一项神经影像学研究
Biases and differences in code review using medical imaging and eye-tracking: genders, humans, and machines
使用医学成像和眼球追踪进行代码审查的偏差和差异:性别、人类和机器
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Huang;Kevin Leach;Zohreh Sharafi;Nicholas McKay;Tyler Santander;Westley Weimer
  • 通讯作者:
    Westley Weimer
From Organizations to Individuals: Psychoactive Substance Use By Professional Programmers
从组织到个人:专业程序员使用精神活性物质

Westley Weimer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Westley Weimer', 18)}}的其他基金

Collaborative Research: SHF: Medium: Near-Hardware Program Repair and Optimization
合作研究:SHF:中:近硬件程序修复和优化
  • 批准号:
    2211749
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Understanding and Evolving Search-based Software Improvement
SHF:小型:协作研究:理解和发展基于搜索的软件改进
  • 批准号:
    1908633
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Travel Grant to ESEC/FSE Doctoral Symposia
ESEC/FSE 博士研讨会旅费资助
  • 批准号:
    1138306
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SHF: Small: Synthesizing Human-Readable Documentation
SHF:小型:综合人类可读的文档
  • 批准号:
    1116289
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Scalable and Trustworthy Automatic Program Repair
职业:可扩展且值得信赖的自动程序修复
  • 批准号:
    0954024
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Fixing Real Bugs in Real Programs Using Evolutionary Algorithms
SHF:媒介:协作研究:使用进化算法修复实际程序中的实际错误
  • 批准号:
    0905373
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
  • 批准号:
    2313024
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了