CIF: Medium: Collaborative Research: Coded Computing for Large-Scale Machine Learning

CIF:媒介:协作研究:大规模机器学习的编码计算

基本信息

  • 批准号:
    1763702
  • 负责人:
  • 金额:
    $ 29.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Deep learning models are breaking new ground in data science tasks including image recognition, automatic translation and autonomous driving. This is achieved by neural networks that can be hundreds of layers deep and involve hundreds of millions of parameters. Training such large models requires distributed computations, very long training times and expensive hardware. This project studies coding theoretic techniques that can accelerate distributed machine learning and allow training with cheaper commodity hardware. Beyond the development of theoretical foundations, this project develops new algorithms for providing fault tolerance over unreliable cloud infrastructure that can significantly reduce the cost of large-scale machine learning. The research outcomes of the project will be broadly disseminated and integrated into education. The specific focus of this research program is on mitigating the bottlenecks of distributed machine learning. Currently, scaling benefits are limited because of two reasons: first, communication is typically the bottleneck and second, straggler effects limit performance. Both problems can be mitigated using coding theoretic methods. This work proposes "coded computing", a transformative framework that combines coding theory with distributed computing to inject computational redundancy in a novel coded form. This framework is then used to develop three research thrusts: a) Coding for Linear Algebraic Computations b) Coding for Iterative Computations and c) Coding for General Distributed Computations. Each of the thrusts operates on a different layer of a machine learning pipeline but all rely on coding theoretic tools and distributed information processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习模型正在图像识别、自动翻译和自动驾驶等数据科学任务中开辟新天地。这是通过深度可达数百层并涉及数亿个参数的神经网络来实现的。训练如此大的模型需要分布式计算、很长的训练时间和昂贵的硬件。该项目研究编码理论技术,可以加速分布式机器学习并允许使用更便宜的商用硬件进行训练。除了理论基础的发展之外,该项目还开发了新的算法,为不可靠的云基础设施提供容错能力,可以显着降低大规模机器学习的成本。该项目的研究成果将得到广泛传播并融入教育。该研究计划的具体重点是缓解分布式机器学习的瓶颈。目前,由于两个原因,扩展优势受到限制:首先,通信通常是瓶颈,其次,落后者效应限制了性能。使用编码理论方法可以缓解这两个问题。这项工作提出了“编码计算”,这是一种将编码理论与分布式计算相结合的变革框架,以一种新颖的编码形式注入计算冗余。然后,该框架用于开发三个研究重点:a)线性代数计算编码b)迭代计算编码和c)通用分布式计算编码。每个推动力都在机器学习管道的不同层上运行,但都依赖于编码理论工具和分布式信息处理。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gradient Coding From Cyclic MDS Codes and Expander Graphs
  • DOI:
    10.1109/tit.2020.3029396
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Netanel Raviv;Itzhak Tamo;Rashish Tandon;A. Dimakis
  • 通讯作者:
    Netanel Raviv;Itzhak Tamo;Rashish Tandon;A. Dimakis
Robust compressed sensing using generative models
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Jalal;Liu Liu-Liu;A. Dimakis;C. Caramanis
  • 通讯作者:
    A. Jalal;Liu Liu-Liu;A. Dimakis;C. Caramanis
Learning Distributions Generated by One-Layer ReLU Networks
  • DOI:
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shanshan Wu;A. Dimakis;Sujay Sanghavi
  • 通讯作者:
    Shanshan Wu;A. Dimakis;Sujay Sanghavi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georgios-Alex Dimakis其他文献

Georgios-Alex Dimakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georgios-Alex Dimakis', 18)}}的其他基金

AF: Medium: Collaborative Research: Theoretical Foundations of Deep Generative Models and High-Dimensional Distributions
AF:中:协作研究:深度生成模型和高维分布的理论基础
  • 批准号:
    1901281
  • 财政年份:
    2019
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Connecting Submodularity and Restricted Strong Convexity
合作研究:连接子模性和受限强凸性
  • 批准号:
    1723052
  • 财政年份:
    2017
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
CIF: Small: Index Coding and Matrix Factorizations
CIF:小:索引编码和矩阵分解
  • 批准号:
    1618689
  • 财政年份:
    2016
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Content Delivery over Heterogeneous Networks: Fundamental Limits and Distributed Algorithms
CIF:媒介:协作研究:异构网络上的内容交付:基本限制和分布式算法
  • 批准号:
    1407278
  • 财政年份:
    2014
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
CIF: Small: Sparsity in Quadratic Optimization through Low-Rank Approximations
CIF:小:通过低阶近似实现二次优化的稀疏性
  • 批准号:
    1422549
  • 财政年份:
    2014
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
CAREER: Network Coding Theory for Distributed Storage
职业:分布式存储的网络编码理论
  • 批准号:
    1344179
  • 财政年份:
    2013
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Design and Analysis of Novel Compressed Sensing Algorithms via Connections with Coding Theory
CIF:小型:协作研究:通过与编码理论的联系设计和分析新型压缩感知算法
  • 批准号:
    1344364
  • 财政年份:
    2013
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Design and Analysis of Novel Compressed Sensing Algorithms via Connections with Coding Theory
CIF:小型:协作研究:通过与编码理论的联系设计和分析新型压缩感知算法
  • 批准号:
    1218235
  • 财政年份:
    2012
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
CAREER: Network Coding Theory for Distributed Storage
职业:分布式存储的网络编码理论
  • 批准号:
    1055099
  • 财政年份:
    2011
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312229
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
  • 批准号:
    2312666
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312228
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
  • 批准号:
    2312547
  • 财政年份:
    2023
  • 资助金额:
    $ 29.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了