CIF: Medium: Multi-Agent Consensus Equilibrium: Modular Methods for Integrating Disparate Sources of Expertise
CIF:媒介:多代理共识均衡:集成不同专业知识来源的模块化方法
基本信息
- 批准号:1763896
- 负责人:
- 金额:$ 121.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past decade, two major trends have reshaped data science: (i) a growing tidal wave of imaging and sensing devices and (ii) the rapid adoption of break-through machine learning technologies. From autonomous vehicles to medical devices, the ability to collect and analyze large quantities of data is changing the world. The goal of this research project is to create a new mathematical and computational framework for integrating distributed and multimodal sensor data into multiple types of emerging models in data science and machine learning so as to extract more information from data. The project team includes researchers from diverse disciplines who will address problems ranging from physical science and medicine to consumer imaging and industrial inspection. The research will result in theories, algorithms, and open software that can be used to integrate information from heterogeneous sensing systems to estimate and reconstruct signals and images.The framework for model-data integration is based on a new theory of Multi-Agent Consensus Equilibrium (MACE). MACE allows for modular integration of multi-modal physical sensor information with information derived from data science models. At the core of this approach is the computational solution of the consensus equilibrium equations. These equations balance distributed sensor information with prior knowledge provided by machine learning models. The MACE framework is a generalization of the more traditional Bayesian or regularized inverse approach, but it allows for the use of non-traditional data science models such as deep convolutional neural networks in the solution of sensing and imaging problems. This project's contributions are in four areas: Thrust 1: Foundational Theoretical Methods; Thrust 2: Robust Sensor and Data Model Integration; Thrust 3: Multimodal and Networked MACE; and Thrust 4: Automated Experimentation. The project also includes integrated educational activities, engaging both graduate and undergraduate students in this research, as well as the development of new courses on consensus equilibrium and nonlinear optical imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去十年中,有两大趋势重塑了数据科学:(i)成像和传感设备的浪潮日益增长;(ii)突破性机器学习技术的迅速采用。从自动驾驶汽车到医疗设备,收集和分析大量数据的能力正在改变世界。本研究项目的目标是创建一个新的数学和计算框架,将分布式和多模态传感器数据集成到数据科学和机器学习中多种类型的新兴模型中,从而从数据中提取更多信息。项目团队包括来自不同学科的研究人员,他们将解决从物理科学和医学到消费者成像和工业检测等问题。该研究将产生理论、算法和开放软件,可用于整合来自异构传感系统的信息,以估计和重建信号和图像。模型数据集成的框架是基于一个新的多智能体共识均衡理论。MACE允许将多模态物理传感器信息与来自数据科学模型的信息进行模块化集成。该方法的核心是一致平衡方程的计算解。这些方程平衡了分布式传感器信息和机器学习模型提供的先验知识。MACE框架是更传统的贝叶斯或正则化逆方法的推广,但它允许在传感和成像问题的解决方案中使用非传统的数据科学模型,如深度卷积神经网络。本项目的贡献主要体现在四个方面:第一,基础理论方法;重点2:鲁棒传感器与数据模型集成;推力3:多模态网络化MACE;推力4:自动化实验。该项目还包括综合教育活动,吸引研究生和本科生参与这项研究,以及开发关于共识平衡和非线性光学成像的新课程。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Periodic Photobleaching with Structured Illumination for Diffusion Imaging
- DOI:10.1021/acs.analchem.2c02950
- 发表时间:2023-01-19
- 期刊:
- 影响因子:7.4
- 作者:Cao,Ziyi;Harmon,Dustin M.;Simpson,Garth J.
- 通讯作者:Simpson,Garth J.
Color Filter Arrays for Quanta Image Sensors
- DOI:10.1109/tci.2020.2964238
- 发表时间:2020-01-01
- 期刊:
- 影响因子:5.4
- 作者:Elgendy, Omar A.;Chan, Stanley H.
- 通讯作者:Chan, Stanley H.
Graph Signal Denoising Using Nested-Structured Deep Algorithm Unrolling
- DOI:10.1109/icassp39728.2021.9414093
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Masatoshi Nagahama;Koki Yamada;Yuichi Tanaka;Stanley H. Chan;Y. Eldar
- 通讯作者:Masatoshi Nagahama;Koki Yamada;Yuichi Tanaka;Stanley H. Chan;Y. Eldar
What Does a One-Bit Quanta Image Sensor Offer?
一位 Quanta 图像传感器提供什么功能?
- DOI:10.1109/tci.2022.3202012
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Chan, Stanley H.
- 通讯作者:Chan, Stanley H.
Performance Analysis of Plug-and-Play ADMM: A Graph Signal Processing Perspective
- DOI:10.1109/tci.2019.2892123
- 发表时间:2019-06-01
- 期刊:
- 影响因子:5.4
- 作者:Chan, Stanley H.
- 通讯作者:Chan, Stanley H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Bouman其他文献
Analysis of BOLD fMRI timeseries data I: Harmonic decomposition and eigenanalysis
- DOI:
10.1016/s1053-8119(00)91437-x - 发表时间:
2000-05-01 - 期刊:
- 影响因子:
- 作者:
Sea Chen;Charles Bouman;Mark J. Lowe - 通讯作者:
Mark J. Lowe
Analysis of BOLD fMRI timeseries data II: Clustered component analysis
- DOI:
10.1016/s1053-8119(00)91442-3 - 发表时间:
2000-05-01 - 期刊:
- 影响因子:
- 作者:
Sea Chen;Charles Bouman;Mark J. Lowe - 通讯作者:
Mark J. Lowe
Charles Bouman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Bouman', 18)}}的其他基金
Parametric Optical Diffusion Tomography
参数光学扩散断层扫描
- 批准号:
0431024 - 财政年份:2004
- 资助金额:
$ 121.6万 - 项目类别:
Standard Grant
Multigrid Optical Diffusion Tomography
多重网格光学扩散断层扫描
- 批准号:
0073357 - 财政年份:2000
- 资助金额:
$ 121.6万 - 项目类别:
Standard Grant
相似海外基金
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 121.6万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312229 - 财政年份:2023
- 资助金额:
$ 121.6万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 121.6万 - 项目类别:
Standard Grant
Study of electrified post-sunset medium-scale traveling ionospheric disturbances at mid-latitudes: a multi-layer model and a multi-source data investigation
中纬度地区带电日落后中尺度移动电离层扰动研究:多层模型和多源数据调查
- 批准号:
23K19066 - 财政年份:2023
- 资助金额:
$ 121.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 121.6万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 121.6万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312448 - 财政年份:2023
- 资助金额:
$ 121.6万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312228 - 财政年份:2023
- 资助金额:
$ 121.6万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312502 - 财政年份:2023
- 资助金额:
$ 121.6万 - 项目类别:
Standard Grant
FET: Medium: Programming multi-cellular systems with spatially-defined computation
FET:中:使用空间定义的计算对多细胞系统进行编程
- 批准号:
2312398 - 财政年份:2023
- 资助金额:
$ 121.6万 - 项目类别:
Continuing Grant