PECASE: Combinatorial Structures in Algebra and Geometry
PECASE:代数和几何中的组合结构
基本信息
- 批准号:9983797
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract:This CAREER award supports research on the combinatorial structures of Schubert varieties, primarily by studying their singularities. Schubert varieties are fascinating geometrical objects which lie at the intersection of several fields of mathematics; their study began with the classical works in projective geometry of the nineteen century. Better understanding of these structures would have impact in algebraic geometry, combinatorics and representation theory. Outside of mathematics, these results may have applications in theoretical physics, computer graphics, and the study of Bucky balls (Carbon-60 molecules). A further goal of this proposal is to explore the changing roll of computers in mathematics. Computer verification and computer proofs play a central role in characterizing properties of Schubert varieties by pattern avoidance.An important aspect of this proposal is its educational component. Mathematics education and research are intrinsically linked - research brings out the creativity and drive needed to learn new mathematical concepts. In particular, undergraduate students enjoy the challenge of facing unsolved problems. However, due to the nature of mathematics research, finding "good" undergraduate research problems is difficult. Computer verified proofs and computer experimentation are particularly well suited to the skills and knowledge of undergraduates while also of interest to graduate students and more senior researchers. Therefore, this line of research has been incorporated into the education portion of the proposal through a new course and undergraduate research projects.
翻译后摘要:这个职业奖支持舒伯特品种的组合结构的研究,主要是通过研究他们的奇点。舒伯特品种是迷人的几何对象在于交叉的几个领域的数学;他们的研究开始与经典作品中的射影几何的十九世纪。 更好地理解这些结构将对代数几何、组合数学和表示论产生影响。在数学之外,这些结果可能在理论物理学、计算机图形学和巴基球(碳-60分子)的研究中有应用。 这个提议的另一个目标是探索计算机在数学中的变化。 计算机验证和计算机证明在通过模式回避来表征舒伯特簇的性质方面起着核心作用。数学教育和研究有着内在的联系-研究带来了学习新数学概念所需的创造力和动力。 特别是,本科生喜欢面对未解决的问题的挑战。 然而,由于数学研究的性质,找到“好”的本科研究问题是困难的。 计算机验证证明和计算机实验特别适合本科生的技能和知识,同时也对研究生和更高级的研究人员感兴趣。 因此,这一研究方向已通过新课程和本科生研究项目纳入提案的教育部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Billey其他文献
Vexillary Elements in the Hyperoctahedral Group
超八面体群中的Vexillary单元
- DOI:
10.1023/a:1008633710118 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Sara Billey;Tao Kai Lam - 通讯作者:
Tao Kai Lam
Sara Billey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara Billey', 18)}}的其他基金
Combinatorial Connections with Algebra, Geometry, Probability and Applications
与代数、几何、概率和应用的组合联系
- 批准号:
1764012 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Combinatorial and Algebraic Aspects of Varieties
品种的组合和代数方面
- 批准号:
1101017 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Computational/Combinatorial Considerations In Topology, Coxeter Groups, and Representation Theory
拓扑、Coxeter 群和表示论中的计算/组合考虑
- 批准号:
0800978 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
PECASE: Combinatorial Structures in Algebra and Geometry
PECASE:代数和几何中的组合结构
- 批准号:
0437359 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407500 - 财政年份:1994
- 资助金额:
$ 20万 - 项目类别:
Fellowship Award
相似海外基金
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Combinatorial Structures in Cluster Algebras
簇代数中的组合结构
- 批准号:
2246570 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Combinatorial Microscopies: Platforms for Probing Molecular and Cellular Dynamics and Structures
组合显微镜:探测分子和细胞动力学和结构的平台
- 批准号:
RGPIN-2022-04837 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial structures on packing, covering, and configulation on hypergraphs
超图上的打包、覆盖和配置的组合结构
- 批准号:
22K03398 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial designs with cyclic structures for designs of experiments, combinatorial testing, and codes
用于实验设计、组合测试和代码的循环结构组合设计
- 批准号:
22K13949 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combinatorial structures in quantum field theory
量子场论中的组合结构
- 批准号:
RGPIN-2019-04412 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
- 批准号:
RGPIN-2017-04157 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
- 批准号:
RGPIN-2017-05783 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial and Algebraic Structures in Dynamics
动力学中的组合和代数结构
- 批准号:
2054643 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
- 批准号:
RGPIN-2017-04157 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual