RI:Medium:Collaborative Research: Object-Centric Inference of Actionable Information from Visual Data

RI:中:协作研究:从视觉数据中以对象为中心推断可操作信息

基本信息

  • 批准号:
    1764078
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This project will create novel algorithms and learning architectures suitable for understanding how to plan and execute actions in an environment for purposeful object manipulation. Such understanding is indispensable for autonomous agents operating in unstructured environments, and it is also valuable in providing automated assistance to humans during the execution of various physical tasks. The project will computationally "imagine" changes that actors with human-like manipulation capabilities can make on that environment and generate plans that can accomplish the desired manipulations. Such tools facilitate the creation of smart environments, where for example a perception system watching an elderly person can infer the task the person is trying to accomplish and offer advice/assistance. They also allow the creation of automated instructional videos customized to a particular environment that can be used for efficient training of unskilled workers. The project will provide mentoring and research opportunities for a diverse set of students, including members of groups typically under-represented in computer science.This research will study environments formed by objects, some of which can be manipulated, while others define obstacles to be avoided or support surfaces to be used. Manipulating an object typically means interacting with small parts of the object, referred to as its active sites: handles, buttons, levers, graspable or pushable regions, etc. A deep challenge is to develop tools for identifying and classifying these active sites on objects at large scale, and to codify the types of interactions they partake of based on dynamic 2D/3D imagery, building a vocabulary of elementary actions. This requires novel machine learning methods and deep architectures for processing large-scale dynamic visual and geometric data. It also requires characterizing manipulations at a more abstract level so that they can be used by a variety of effectors, robotic or human, on different object geometries and physical characteristics. A further challenge is the accumulation and update of actionable information as more visual data is received in online object model repositories, such as ShapeNet. A final but key step of the approach will be the development of tools for transporting such action knowledge to new settings that are similar but not identical to the capture settings, using a variety of mathematical tools including functional maps.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将创建新颖的算法和学习架构,适合于理解如何在有目的的对象操作环境中计划和执行动作。这种理解对于在非结构化环境中操作的自主代理是必不可少的,并且在执行各种物理任务期间为人类提供自动化帮助也很有价值。该项目将通过计算“想象”具有类似人类操作能力的参与者可以在该环境中做出的变化,并生成可以完成所需操作的计划。这些工具有助于创造智能环境,例如,观察老年人的感知系统可以推断出该人试图完成的任务,并提供建议/帮助。它们还允许创建针对特定环境定制的自动化教学视频,可用于有效培训非技术工人。该项目将为各种各样的学生提供指导和研究机会,包括在计算机科学领域代表性不足的群体的成员。这项研究将研究由物体形成的环境,其中一些是可以操纵的,而另一些则定义了要避免的障碍物或要使用的支撑表面。操作对象通常意味着与对象的一小部分进行交互,这些部分被称为活动区域:手柄、按钮、杠杆、可抓取或可推的区域等。一个深层次的挑战是开发工具来大规模地识别和分类物体上的这些活动位点,并根据动态2D/3D图像编纂它们参与的交互类型,建立基本动作的词汇表。这需要新颖的机器学习方法和深度架构来处理大规模动态视觉和几何数据。它还需要在更抽象的层面上描述操作的特征,以便它们可以被各种效应器(机器人或人类)用于不同的物体几何形状和物理特征。随着在线对象模型存储库(如ShapeNet)接收到更多的可视化数据,进一步的挑战是可操作信息的积累和更新。该方法的最后但关键的一步将是开发工具,用于将这些动作知识传输到与捕获设置相似但不相同的新设置,使用各种数学工具,包括功能图。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deformation-Aware 3D Model Embedding and Retrieval
  • DOI:
    10.1007/978-3-030-58571-6_24
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mikaela Angelina Uy;Jingwei Huang;Minhyuk Sung;Tolga Birdal;L. Guibas
  • 通讯作者:
    Mikaela Angelina Uy;Jingwei Huang;Minhyuk Sung;Tolga Birdal;L. Guibas
TextureNet: Consistent Local Parametrizations for Learning From High-Resolution Signals on Meshes
Joint Learning of 3D Shape Retrieval and Deformation
Rethinking Sampling in 3D Point Cloud Generative Adversarial Networks
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    He Wang;Zetian Jiang;Li Yi;Kaichun Mo;Hao Su;L. Guibas
  • 通讯作者:
    He Wang;Zetian Jiang;Li Yi;Kaichun Mo;Hao Su;L. Guibas
Deep Part Induction from Articulated Object Pairs
  • DOI:
    10.1145/3272127.3275027
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Yi, Li;Huang, Haibin;Guibas, Leonidas
  • 通讯作者:
    Guibas, Leonidas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hao Su其他文献

Regional characteristics and discrimination of the fermentation starter Hong Qu in traditional rice wine brewing
传统黄酒酿造中发酵剂红曲的地域特征及判别
A QM/MM study of the catalytic mechanism of a-1,4-glucan lyase from the red seaweed Gracilariopsis lemaneiformis
红海藻龙须菜 a-1,4-葡聚糖裂解酶催化机制的 QM/MM 研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Hao Su;Lihua Dong;Yongjun Liu
  • 通讯作者:
    Yongjun Liu
Effect of Delayed Surgical Resection of Primary Hepatocellular Carcinoma on Survival Outcomes In Elderly Patients and Prediction of Clinical Models
原发性肝细胞癌延迟手术切除对老年患者生存结局的影响及临床模型预测
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongfei He;Tian;Shu;Zi;Shuqi Zhao;Xin Zhou;Liping Yan;Xiangkun Wang;Hao Su;Guangzhi Zhu;Chuangye Han;T. Peng
  • 通讯作者:
    T. Peng
Real-Time Robust 3D Plane Extraction for Wearable Robot Perception and Control
用于可穿戴机器人感知和控制的实时鲁棒 3D 平面提取
  • DOI:
    10.1115/dmd2018-6964
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ran Duan;Shuangyue Yu;Guang H. Yue;R. Foulds;Chen Feng;Yingli Tian;Hao Su
  • 通讯作者:
    Hao Su
Constrained Online Two-stage Stochastic Optimization: Algorithm with (and without) Predictions
约束在线两阶段随机优化:带(和不带)预测的算法
  • DOI:
    10.48550/arxiv.2401.01077
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Piao Hu;Jiashuo Jiang;Guodong Lyu;Hao Su
  • 通讯作者:
    Hao Su

Hao Su的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hao Su', 18)}}的其他基金

CAREER: Interaction-oriented 3D Representation Learning on Point Cloud
职业:点云上面向交互的 3D 表示学习
  • 批准号:
    2240160
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
W-HTF-RL: Collaborative Research: Improving the Future of Retail and Warehouse Workers with Upper Limb Disabilities via Perceptive and Adaptive Soft Wearable Robots
W-HTF-RL:协作研究:通过感知和自适应软可穿戴机器人改善上肢残疾的零售和仓库工人的未来
  • 批准号:
    2231419
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
CAREER: Versatile Wearable Robots for Rehabilitation of Children with Gait Disabilities
职业:用于步态障碍儿童康复的多功能可穿戴机器人
  • 批准号:
    2227091
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
W-HTF-RL: Collaborative Research: Improving the Future of Retail and Warehouse Workers with Upper Limb Disabilities via Perceptive and Adaptive Soft Wearable Robots
W-HTF-RL:协作研究:通过感知和自适应软可穿戴机器人改善上肢残疾的零售和仓库工人的未来
  • 批准号:
    2026622
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
CAREER: Versatile Wearable Robots for Rehabilitation of Children with Gait Disabilities
职业:用于步态障碍儿童康复的多功能可穿戴机器人
  • 批准号:
    1944655
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
NRI: FND: Soft Wearable Robots for Injury Prevention and Performance Augmentation
NRI:FND:用于预防伤害和增强性能的软可穿戴机器人
  • 批准号:
    1830613
  • 财政年份:
    2018
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了