CSEDI Collaborative Research: Understanding the nature of water transport between the transition zone and the lower mantle through the interdisciplinary studies
CSEDI合作研究:通过跨学科研究了解过渡带与下地幔之间的水运移本质
基本信息
- 批准号:1764140
- 负责人:
- 金额:$ 13.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Earth is the water planet, with much of its H2O chemically bound within its rocky interior. The goal of this project is to provide new insight into the way in which water circulates, carried by the slow heat convection of Earth's silicate mantle. Geophysicists now have strong evidence that there is a substantial amount of water in Earth's interior, perhaps more than the current mass of the oceans. There is strong evidence that most of this water resides within the mantle transition zone (MTZ), between 410 km and 660 km depth in the Earth. The MTZ spans the stability range of minerals that can incorporate water within their crystal structures, up to a mass-fraction of a percent or more. It appears that the transition zone acts as a refillable reservoir of mineral-bound water within Earth's interior. The water in Earth's surface oceans can exchange with the water in the mantle transition zone via mantle convection, on time scales of 10-30 million years. How does the transition zone maintain its elevated water content as mantle rock flows upward and downward through it, converting to water-phobic minerals at its boundaries, particularly at its lower boundary at ~660-km depth? The goal of this project is to study the MTZ and lower-mantle minerals at high pressure in the lab and with computer simulations to determine how the water behaves near 660-km depth, and to detect water expulsion from descending rock masses using scattered seismic waves. The award will provide graduate and undergraduate training, including summer research projects, for several students in a broadly interdisciplinary research project.Understanding the nature of large-scale water transport in Earth's deep interior is one of the key issues in the study of evolution of Earth (and other planets). Since diffusion is inefficient, the most important process to control the large-scale transport of water is melting and subsequent melt-solid separation. The goal of this study is to improve our understanding on these two issues. Melting likely occurs when water-rich materials in the transition zone are brought into upper or the lower mantle where the water solubility in minerals is low. However, when metallic iron is present, then a majority of water partitions into it. Hence metallic iron has a controlling effect on the melting behavior. One aspect of this research is to obtain a better understanding of metallic iron content in the lower mantle. When melt is formed, most of water (hydrogen) goes to the melt. Melt migrates up or down depending on its density relative to the unmelted residual rock. Melt density under deep-mantle conditions has not been constrained well, particularly considering the range of likely chemical compositions. This project will investigate melt density under deep-mantle conditions with different redox values and plausible variations in the iron-magnesium ratio. Combining these, the investigators will have an improved view of deep-Earth water circulation. With scattered seismic waves, primarily using the receiver-function technique, the team will map out locations beneath the mantle transition zone where water-enhanced partial melt is present.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球是一个有水的行星,它的大部分水都以化学方式束缚在它的岩石内部。这个项目的目标是为水的循环方式提供新的见解,由地球硅酸盐地幔的缓慢热对流携带。地球物理学家现在有强有力的证据表明,地球内部有大量的水,可能比目前海洋的质量还要多。有强有力的证据表明,这些水大部分位于地幔过渡带(MTZ),在地球410公里到660公里的深度之间。MTZ跨越了可以在其晶体结构中掺入水的矿物的稳定范围,最高可达1%或更多的质量分数。看起来,这个过渡带在地球内部充当着一个可重复填充的储藏库,储存着矿物结合的水。地球表面海洋中的水可以通过地幔对流与地幔过渡带中的水交换,时间尺度为1000 - 3000万年。当地幔岩石向上和向下流过过渡带时,过渡带如何保持其高含水量,并在其边界,特别是在约660公里深度的下边界转化为疏水矿物?该项目的目标是在实验室中研究高压下的MTZ和下地幔矿物,并通过计算机模拟来确定660公里深度附近水的行为,并利用散射地震波检测下降岩体的排水量。该奖项将为研究生和本科生提供培训,包括夏季研究项目,为几名学生提供广泛的跨学科研究项目。了解地球内部深层大规模水运的本质是研究地球(和其他行星)演化的关键问题之一。由于扩散是低效的,控制水的大规模输送的最重要的过程是熔化和随后的熔融-固分离。本研究的目的是提高我们对这两个问题的认识。当过渡带中的富水物质被带入矿物水溶性较低的上地幔或下地幔时,可能发生熔融。然而,当金属铁存在时,大部分的水就会被分解成铁。因此,金属铁对熔炼行为有控制作用。这项研究的一个方面是更好地了解下地幔中金属铁的含量。当熔体形成时,大部分的水(氢)进入熔体。熔体向上或向下迁移取决于其相对于未熔化残余岩石的密度。深地幔条件下的熔体密度还没有得到很好的限制,特别是考虑到可能的化学成分的范围。该项目将研究在不同氧化还原值和铁镁比可能变化的深地幔条件下的熔体密度。结合这些,研究人员将对地球深处的水循环有一个更好的看法。利用散射地震波,主要使用接收器功能技术,该团队将绘制出地幔过渡带下存在水增强部分融化的位置。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of valence and spin of Fe in MgSiO3 melts: Structural insights from first-principles molecular dynamics simulations
MgSiO3 熔体中 Fe 价态和自旋的影响:第一性原理分子动力学模拟的结构见解
- DOI:10.1016/j.gca.2020.03.040
- 发表时间:2020
- 期刊:
- 影响因子:5
- 作者:Ghosh, DB and
- 通讯作者:Ghosh, DB and
Evidence for Fe-Si-O liquid immiscibility at deep Earth pressures
- DOI:10.1073/pnas.1821712116
- 发表时间:2019-05-21
- 期刊:
- 影响因子:11.1
- 作者:Arveson, Sarah M.;Deng, Jie;Lee, Kanani K. M.
- 通讯作者:Lee, Kanani K. M.
Mixed incorporation of carbon and hydrogen in silicate melts under varying pressure and redox conditions
- DOI:10.1016/j.epsl.2020.116520
- 发表时间:2020-11-01
- 期刊:
- 影响因子:5.3
- 作者:Karki, Bijaya B.;Ghosh, Dipta B.;Banjara, Dipendra
- 通讯作者:Banjara, Dipendra
First‐Principles Study of FeO2Hx Solid and Melt System at High Pressures: Implications for Ultralow‐Velocity Zones
- DOI:10.1029/2019jb017376
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Jie Deng;B. Karki;D. Ghosh;Kanani K. M. Lee
- 通讯作者:Jie Deng;B. Karki;D. Ghosh;Kanani K. M. Lee
A magma ocean origin to divergent redox evolutions of rocky planetary bodies and early atmospheres
- DOI:10.1038/s41467-020-15757-0
- 发表时间:2020-04-24
- 期刊:
- 影响因子:16.6
- 作者:Deng, Jie;Du, Zhixue;Lee, Kanani K. M.
- 通讯作者:Lee, Kanani K. M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bijaya Karki其他文献
Deep mantle melting, global water circulation and its implications for the stability of the ocean mass
- DOI:
10.1186/s40645-020-00379-3 - 发表时间:
2020-12-10 - 期刊:
- 影响因子:2.800
- 作者:
Shun-ichiro Karato;Bijaya Karki;Jeffrey Park - 通讯作者:
Jeffrey Park
Idiopathic Intracranial Hypertension in an Adolescent With Recent Human Immunodeficiency Virus (HIV) Diagnosis: A Challenging Etiological Dilemma
近期感染人类免疫缺陷病毒 (HIV) 的青少年特发性颅内高压诊断:一个具有挑战性的病因学困境
- DOI:
10.7759/cureus.60001 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Imoh L Ebong;Arleen Delgado;Sofia S Aranda;Olufunto O Shonibare;Saman Aryal;Bijaya Karki;Katiusca Acosta - 通讯作者:
Katiusca Acosta
Correction to: Deep mantle melting, global water circulation and its implications for the stability of the ocean mass
- DOI:
10.1186/s40645-020-00404-5 - 发表时间:
2021-01-27 - 期刊:
- 影响因子:2.800
- 作者:
Shun-ichiro Karato;Bijaya Karki;Jeffrey Park - 通讯作者:
Jeffrey Park
Bijaya Karki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bijaya Karki', 18)}}的其他基金
I-Corps: Universal 3D Scanning Through Polarization-based Imaging
I-Corps:通过基于偏振的成像进行通用 3D 扫描
- 批准号:
2050231 - 财政年份:2021
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
Collaborative Research: CSEDI: Understanding the Role of Hydrogen and Melting in the Water Transport Across the Transition Zone-Lower Mantle Boundary
合作研究:CSEDI:了解氢和熔化在跨过渡带-下地幔边界的水传输中的作用
- 批准号:
2001074 - 财政年份:2020
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: Understanding the nature of water and melt transport between the transition zone and the lower mantle combining mineral physics and seismology
CSEDI合作研究:结合矿物物理和地震学了解过渡带和下地幔之间水和熔体传输的性质
- 批准号:
1463807 - 财政年份:2015
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
First-Principles Molecular Dynamics Simulations of Silicate Liquids: Structure, Diffusion and Viscosity at Mantle Conditions
硅酸盐液体的第一原理分子动力学模拟:地幔条件下的结构、扩散和粘度
- 批准号:
1426530 - 财政年份:2014
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
First-Principles Molecular Dynamics Simulations of Silicate Liquids: Structure, Diffusion and Viscosity at Mantle Conditions
硅酸盐液体的第一原理分子动力学模拟:地幔条件下的结构、扩散和粘度
- 批准号:
1118869 - 财政年份:2011
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
First Principles Computational Study of Defects, Diffusion and Grain Boundaries in Mantle Materials
地幔材料缺陷、扩散和晶界的第一性原理计算研究
- 批准号:
1014514 - 财政年份:2010
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
First-Principles Molecular Dynamics Simulations of Silicate Liquids: Structure, Diffusion and Viscosity at Mantle Conditions
硅酸盐液体的第一原理分子动力学模拟:地幔条件下的结构、扩散和粘度
- 批准号:
0809489 - 财政年份:2008
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
Collaborative Research: First Principles Investigation of Silicate Liquids at Mantle Conditions
合作研究:地幔条件下硅酸盐液体的第一原理研究
- 批准号:
0409074 - 财政年份:2004
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
CAREER: Rheology of Materials of Earth's Mantle: High-end Computational/Visualization Research and Education
职业:地幔材料流变学:高端计算/可视化研究和教育
- 批准号:
0347204 - 财政年份:2004
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
Collaborative Research: ITR (ASE)+(sim): Virtual Laboratory for Earth and Planetary Materials Studies
合作研究:ITR (ASE) (sim):地球和行星材料研究虚拟实验室
- 批准号:
0426601 - 财政年份:2004
- 资助金额:
$ 13.8万 - 项目类别:
Cooperative Agreement
相似海外基金
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2154072 - 财政年份:2022
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153688 - 财政年份:2022
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
- 批准号:
2153910 - 财政年份:2022
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
- 批准号:
2054884 - 财政年份:2021
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
- 批准号:
2054964 - 财政年份:2021
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
- 批准号:
2102571 - 财政年份:2021
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
- 批准号:
2102777 - 财政年份:2021
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
- 批准号:
2054912 - 财政年份:2021
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
- 批准号:
2054876 - 财政年份:2021
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
- 批准号:
2054993 - 财政年份:2021
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant