Characterizing Structures and Intra-/Intermolecular Forces in Molecular CO2 Reduction Catalysts and Reaction Intermediates by Infrared Spectroscopy of Cryogenic Ions

通过低温离子红外光谱表征分子 CO2 还原催化剂和反应中间体的结构和分子内/分子间力

基本信息

  • 批准号:
    1764191
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The generation of a carbon-neutral, sustainable energy economy has been recognized by many as one of the most important new technologies to be developed in the near future. The conversion of carbon dioxide (CO2) into chemically useable fuels is a promising approach to attain this goal. Such processes are difficult to implement, and they need to be assisted by catalysts, i.e., by molecules or materials that lower the energy required to convert CO2 into fuel. In order to develop cost-effective catalysts, we need to understand how CO2 interacts with catalyst molecules. In this project funded by the Chemical Structure Dynamics and Mechanism (CSDM-A) program of the Chemistry Division, Professor J. Mathias Weber of the University of Colorado at Boulder is using a state-of-the-art combination of mass spectrometric and laser spectroscopy techniques to study the interactions of CO2 with catalyst molecules. The catalysts of interest are molecules that contain metals such as cobalt (Co) and rhenium (Re) surrounded by structures containing other elements (for example carbon (C) , oxygen (O), nitrogen (N)). The surrounding structures influence how CO2 binds to the metal atom (key catalytic processes originate in the CO2-metal atom interaction). These metal catalyst "complexes" are ionic (they possess electric charge), which means they can be sorted and concentrated using a mass spectrometer. The desired ionic catalyst complexes are cooled to very low temperatures (as low as 5 degrees Kelvin (K), or minus 450 degrees Fahrenheit). At these low temperatures, CO2 molecules bind to the catalyst complexes. Once the CO2-metal complexes are formed, infrared laser light is used to measure the vibrations of these complexes. From the vibrations, the structures of the complexes can be inferred. This approach enables probing key steps in their reactions, allowing the assembly of detailed mechanisms of how the catalysts function. The broader impacts of this work include potential societal benefits towards the development of new sources of chemical fuels with low environmental impact, as well as the training of graduate student researchers in advanced experimental and computational techniques. Moreover, the Weber group is developing a web-based simulation of carbon dioxide conversion, transporting the laboratory research into the classroom, with the aim to enhance student understanding of catalysis. In this project, the Weber group characterizes the infrared spectra of molecular catalysts for the conversion of carbon dioxide, as well as other species relevant for the catalytic cycle involving such catalysts. The catalysts under study are charged molecules (ions), generated by electrospray ionization. Their complexes with carbon dioxide, proton donors, and solvents are prepared in a series of temperature-controlled ion traps, and isolated in a time-of-flight mass spectrometer. The target molecules are irradiated with pulsed light from a tunable infrared light source. They fragment upon photon absorption, and the fragments are detected in a second mass analysis step. The vibrational spectra of the complexes under study are measured by monitoring fragments while tuning the infrared wavelength. The spectra yield information on the structures and intermolecular forces governing the function of the catalysts. Together with quantum chemical calculations, the spectra provide mechanistic insight into the chemistry at play in electrochemical conversion of carbon dioxide into other, more valuable molecules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
碳中和、可持续能源经济的产生已被许多人认为是在不久的将来要开发的最重要的新技术之一。将二氧化碳(CO2)转化为化学上可用的燃料是实现这一目标的一种有希望的方法。这样的过程很难实现,而且需要催化剂的辅助,即通过降低将二氧化碳转化为燃料所需能量的分子或材料。为了开发具有成本效益的催化剂,我们需要了解二氧化碳是如何与催化剂分子相互作用的。在这个由化学部门化学结构动力学和机理(CSDM-A)项目资助的项目中,科罗拉多大学博尔德分校的J. Mathias Weber教授使用了最先进的质谱和激光光谱技术的结合来研究二氧化碳与催化剂分子的相互作用。我们感兴趣的催化剂是含有钴(Co)和铼(Re)等金属的分子,其周围的结构含有其他元素(如碳(C)、氧(O)、氮(N))。周围的结构影响二氧化碳如何与金属原子结合(关键的催化过程源于二氧化碳-金属原子相互作用)。这些金属催化剂“复合物”是离子型的(它们带有电荷),这意味着它们可以用质谱仪进行分类和浓缩。所需的离子催化剂配合物被冷却到非常低的温度(低至5开尔文(K),或零下450华氏度)。在这种低温下,二氧化碳分子与催化剂络合物结合。一旦二氧化碳-金属配合物形成,红外激光就被用来测量这些配合物的振动。从振动可以推断出配合物的结构。这种方法可以探测它们反应中的关键步骤,从而可以组装催化剂如何起作用的详细机制。这项工作的更广泛的影响包括潜在的社会效益,有利于开发具有低环境影响的新化学燃料来源,以及培养研究生研究人员的先进实验和计算技术。此外,韦伯小组正在开发一个基于网络的二氧化碳转化模拟,将实验室研究转移到课堂上,目的是提高学生对催化作用的理解。在这个项目中,Weber小组对二氧化碳转化分子催化剂的红外光谱进行了表征,并对涉及这类催化剂的催化循环的其他物种进行了表征。所研究的催化剂是带电分子(离子),由电喷雾电离产生。它们与二氧化碳、质子供体和溶剂的配合物在一系列温度控制的离子阱中制备,并在飞行时间质谱仪中分离。目标分子用来自可调红外光源的脉冲光照射。它们在光子吸收后碎片化,碎片在第二个质量分析步骤中被检测到。所研究的配合物的振动光谱是通过监测碎片同时调整红外波长来测量的。光谱给出了控制催化剂功能的结构和分子间作用力的信息。与量子化学计算一起,光谱提供了对二氧化碳电化学转化为其他更有价值分子的化学机制的见解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Formate Binding to a Bipyridine-Based Cobalt-4N Complex
  • DOI:
    10.1021/acs.jpca.1c06037
  • 发表时间:
    2021-08-16
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Foreman, Madison M.;Hirsch, Rebecca J.;Weber, J. Mathias
  • 通讯作者:
    Weber, J. Mathias
Intrinsic Structure and Electronic Spectrum of Deprotonated Biliverdin: Cryogenic Ion Spectroscopy and Ion Mobility
去质子化胆绿素的本质结构和电子能谱:低温离子能谱和离子淌度
  • DOI:
    10.1021/jacs.1c08701
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Zagorec-Marks, Wyatt;Dodson, Leah G.;Weis, Patrick;Schneider, Erik K.;Kappes, Manfred M.;Weber, J. Mathias
  • 通讯作者:
    Weber, J. Mathias
Ion Binding Site Structure and the Role of Water in Alkaline Earth EDTA Complexes
  • DOI:
    10.1021/acs.jpclett.2c02391
  • 发表时间:
    2022-09-06
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Foreman, Madison M.;Weber, J. Mathias
  • 通讯作者:
    Weber, J. Mathias
Cryogenic Ion Spectroscopy of the Green Fluorescent Protein Chromophore in Vacuo
真空中绿色荧光蛋白发色团的低温离子光谱
  • DOI:
    10.1021/acs.jpclett.9b02916
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zagorec-Marks, Wyatt;Foreman, Madison M.;Verlet, Jan R.;Weber, J. Mathias
  • 通讯作者:
    Weber, J. Mathias
Tag-Free, Temperature Dependent Infrared Spectra of the GFP Chromophore: Revisiting the Question of Isomerism
GFP 发色团的无标签、温度依赖性红外光谱:重新审视异构现象问题
  • DOI:
    10.1021/acs.jpca.0c07172
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zagorec-Marks, Wyatt;Foreman, Madison M.;Weber, J. Mathias
  • 通讯作者:
    Weber, J. Mathias
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J Mathias Weber其他文献

J Mathias Weber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J Mathias Weber', 18)}}的其他基金

Cryogenic Ion Spectroscopy Studies of Ion-Receptor Interactions in Water Soluble Molecular Recognition Complexes and Their Hydrated Clusters
水溶性分子识别配合物及其水合簇中离子-受体相互作用的低温离子光谱研究
  • 批准号:
    2154271
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
SusChEM: Studying Catalysts and Reaction Intermediates for Water Oxidation by Spectroscopy of Cryogenic Mass-Selected Ions
SusChEM:通过低温质量选择离子光谱研究水氧化的催化剂和反应中间体
  • 批准号:
    1361814
  • 财政年份:
    2014
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
CAREER: Spectroscopic Studies of Ionic Transition Metal Complexes
职业:离子过渡金属配合物的光谱研究
  • 批准号:
    0845618
  • 财政年份:
    2009
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
  • 批准号:
    2593424
  • 财政年份:
    2025
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Studentship
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
  • 批准号:
    2333630
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
  • 批准号:
    2330957
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
  • 批准号:
    2340414
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
  • 批准号:
    2323276
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
  • 批准号:
    24K07680
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
  • 批准号:
    DP240101708
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
  • 批准号:
    EP/Z000599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了