Recent Developments in Noncommutative Algebra and Related Areas

非交换代数及相关领域的最新进展

基本信息

  • 批准号:
    1764210
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

This award supports participation in the conference "Recent developments in noncommutative algebra and related areas", which will be held March 17-19, 2018 at the University of Washington, Seattle, Washington. The purpose of the conference is to survey recent developments and to chart new paths for further progress on several topics of active current interest in noncommutative algebra, with broad connections to other subjects such as combinatorics, algebraic geometry and mathematical physics.The conference will bring together researchers who work in noncommutative algebra and related areas, namely, algebraic geometry, representation theory and topology. The focus of the conference will be new research directions of several important topics such as noncommutative algebraic geometry, Hopf algebras and quantum groups, noncommutative invariant theory, higher category theory, and algebraic aspects of mathematical physics. Special effort will be made to bring together a group of junior researchers, women and underrepresented minorities, who are currently working in different directions, and to engage them in interdisciplinary activity through collaboration. More information can be found at the conference website: https://sites.math.washington.edu/~zhang/SeattleRDncAR2018/index.htmlThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加会议“在非交换代数和相关领域的最新发展”,这将是3月17日至19日,2018年在华盛顿,西雅图,华盛顿大学举行。会议的目的是调查最近的发展,并制定新的路径,为进一步发展的几个主题的积极当前感兴趣的非交换代数,与其他学科,如组合学,代数几何和数学物理的广泛联系。会议将汇集谁在非交换代数和相关领域,即代数几何,表示论和拓扑工作的研究人员。会议的重点将是几个重要课题的新研究方向,如非交换代数几何,霍普夫代数和量子群,非交换不变量理论,更高的范畴理论和数学物理的代数方面。将特别努力将一群目前在不同方向工作的初级研究人员、妇女和代表性不足的少数族裔聚集在一起,并通过合作让他们参与跨学科活动。更多信息可以在会议网站上找到:https://sites.math.washington.edu/~zhang/SeattleRDncAR2018/index.htmlThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Zhang其他文献

Auto-Body Panel Springback Analysis Using Yoshida-Uemori Model
使用 Yoshida-Uemori 模型进行车身板回弹分析
  • DOI:
    10.4028/www.scientific.net/amr.314-316.815
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Hu;Xiongqi Peng;Jun Chen;H. Lu;Jian Zhang
  • 通讯作者:
    Jian Zhang
COAST: COntrollable Arbitrary-Sampling NeTwork for Compressive Sensing
COAST:用于压缩感知的可控任意采样网络
An on-chip test structure to measure the Seebeck coefficient of thermopile sensors
用于测量热电堆传感器塞贝克系数的片上测试结构
Clinical and Population Studies Deficient CD 4 CD 25 T Regulatory Cell Function in Patients With Abdominal Aortic Aneurysms
腹主动脉瘤患者 CD 4 CD 25 T 调节细胞功能缺陷的临床和人群研究
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ming;Jian Zhang;Yong Wang;Shao;D. Böckler;Z. Duan;S. Xin
  • 通讯作者:
    S. Xin
Electrospinning synthesis of NiCo2O4 embedded N-doped carbon for high-performance supercapacitors
静电纺丝合成 NiCo2O4 嵌入氮掺杂碳用于高性能超级电容器
  • DOI:
    10.1016/j.est.2021.102665
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Jing Li;Yin Liu;Dan Zhan;Yongjin Zou;Fen Xu;Lixian Sun;Cuili Xiang;Jian Zhang
  • 通讯作者:
    Jian Zhang

Jian Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Zhang', 18)}}的其他基金

Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245607
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
From Covariance Regressions to Nonparametric Dynamic Causal Modelling (CoreDCM)
从协方差回归到非参数动态因果建模 (CoreDCM)
  • 批准号:
    EP/X038297/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Research Grant
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
  • 批准号:
    2302087
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
NSF Showcase for DUE Projects at the ACM SIGCSE Symposium
NSF 在 ACM SIGCSE 研讨会上展示 DUE 项目
  • 批准号:
    2245139
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Realistic fault modelling to enable optimization of low power IoT and Cognitive fault-tolerant computing systems
现实故障建模可优化低功耗物联网和认知容错计算系统
  • 批准号:
    EP/T026022/1
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Research Grant
Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry
非交换代数与几何相互作用的最新进展和新方向
  • 批准号:
    1953148
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Topics in Noncommutative Algebra
非交换代数主题
  • 批准号:
    2001015
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Research in Noncommutative Algebra: Hopf Algebra Actions on Noetherian Artin-Schelter Regular Algebras and Noncommutative McKay Correspondence
非交换代数研究:Noetherian Artin-Schelter 正则代数上的 Hopf 代数作用和非交换麦凯对应
  • 批准号:
    1700825
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Real Time Spectroscopic Studies of Hybrid MOF Photocatalysts for Solar Fuel Production
合作研究:用于太阳能燃料生产的混合 MOF 光催化剂的实时光谱研究
  • 批准号:
    1706632
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Spatial Skills and Success in Introductory Computing
协作研究:空间技能和入门计算的成功
  • 批准号:
    1711780
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant

相似海外基金

Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
  • 批准号:
    10064693
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
  • 批准号:
    23H01264
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
  • 批准号:
    23H01944
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
  • 批准号:
    23K12950
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New developments in Javanese Homo erectus research using synchrotron, proteomics and high precision dating
利用同步加速器、蛋白质组学和高精度测年技术进行爪哇直立人研究的新进展
  • 批准号:
    23K17404
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
  • 批准号:
    23K01343
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了