Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry
非交换代数与几何相互作用的最新进展和新方向
基本信息
- 批准号:1953148
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This NSF award supports participation in the international conference ``Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry,'' which is planned for July 13–17, 2020, at the University of Washington in Seattle, Washington. It is expected that 80–100 participants from all over the world will attend. Mathematics is the study of patterns. Frequently, such patterns are described via systems of equations. Systems of polynomial-style equations and their solutions play a critical role in almost every scientific field, such as statistical mechanics, elementary particle physics, quantum mechanics, robotics, crystallography, and networking. Often, the solutions cannot be found by experimentation, and often they are not numbers but are functions (e.g., differential operators or matrices), and so, in general, they do not commute. The field of noncommutative algebra is the science behind seeking methods that find all solutions to any system of polynomial-style equations in noncommuting variables, and the planned conference will focus on recent research activities that use different types of geometric techniques in noncommutative algebra. The conference will consist of survey talks, research talks, a poster session, a career panel, a public lecture, and research discussions. The research talks will feature 50-minute, 25-minute, and 10-minute lectures in order to accommodate researchers at various career stages. The 10-minute talks and poster session will take place early in the conference in order to facilitate maximal discussion time during the conference between early-career researchers and senior researchers. Funding will be prioritized for junior participants and for researchers from groups that are traditionally under-represented in the mathematical sciences.The purpose of the planned conference is to generate new research in noncommutative algebra and related areas, while contributing to the development of the research workforce in noncommutative algebra. This major international conference will cover several topics of active current interest in noncommutative algebra, with broad connections to combinatorics, geometry, mathematical physics, number theory, and topology. It will emphasize recent exciting developments and emerging future directions, particularly in such areas as noncommutative algebraic geometry, Artin-Schelter regular algebras, Calibi-Yau algebras, Hopf algebras and quantum groups, category theory, and homological techniques. The conference will bring together the leading experts from different specialties within noncommutative algebra, encouraging interactions between participants from a broad range of perspectives and approaches. Further information can be found at the conference website: https://sites.google.com/view/ndna2020/homeThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一NSF奖支持参加计划于2020年7月13日至17日在华盛顿州西雅图的华盛顿大学举行的国际会议`非对易代数和几何相互作用的最新进展和新方向‘’。预计将有来自世界各地的80-100人参加。数学是对模式的研究。通常,这种模式是通过方程系统来描述的。多项式形式的方程组及其解在统计力学、基本粒子物理、量子力学、机器人学、结晶学和网络等几乎每一个科学领域都扮演着重要的角色。通常,解决方案不能通过实验找到,而且通常它们不是数字,而是函数(例如,微分运算符或矩阵),因此,通常它们不交换。非对易代数领域是寻找方法背后的科学,这些方法可以在非对易变量中找到任何多项式式方程组的所有解,计划中的会议将集中于最近的研究活动,这些研究活动使用了非对易代数中不同类型的几何技术。会议将包括调查演讲、研究演讲、海报会议、职业小组讨论、公开讲座和研究讨论。研究讲座将包括50分钟、25分钟和10分钟的讲座,以适应处于不同职业阶段的研究人员。10分钟的演讲和海报会议将在会议早期进行,以便在会议期间促进早期研究人员和高级研究人员之间的最大讨论时间。将优先为初级参与者和来自传统上在数学科学中代表性不足的群体的研究人员提供资金。计划中的会议的目的是在非对易代数及其相关领域产生新的研究,同时促进非对易代数研究队伍的发展。这次重要的国际会议将涵盖当前活跃在非对易代数中的几个主题,与组合学、几何学、数学物理、数论和拓扑学有着广泛的联系。它将强调最近令人兴奋的发展和新兴的未来方向,特别是在非对易代数几何、Artin-Schelter正则代数、Calibi-Yau代数、Hopf代数和量子群、范畴理论和同调技巧等领域。会议将汇聚非对易代数领域不同专业的顶尖专家,鼓励与会者从广泛的角度和方法进行互动。更多信息可在会议网站上找到:https://sites.google.com/view/ndna2020/homeThis奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Zhang其他文献
Auto-Body Panel Springback Analysis Using Yoshida-Uemori Model
使用 Yoshida-Uemori 模型进行车身板回弹分析
- DOI:
10.4028/www.scientific.net/amr.314-316.815 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
K. Hu;Xiongqi Peng;Jun Chen;H. Lu;Jian Zhang - 通讯作者:
Jian Zhang
COAST: COntrollable Arbitrary-Sampling NeTwork for Compressive Sensing
COAST:用于压缩感知的可控任意采样网络
- DOI:
10.1109/tip.2021.3091834 - 发表时间:
2021-06 - 期刊:
- 影响因子:0
- 作者:
Di You;Jian Zhang;Jingfen Xie;Bin Chen;Siwei Ma - 通讯作者:
Siwei Ma
An on-chip test structure to measure the Seebeck coefficient of thermopile sensors
用于测量热电堆传感器塞贝克系数的片上测试结构
- DOI:
10.1088/1361-6439/ac3be1 - 发表时间:
2021-11 - 期刊:
- 影响因子:2.3
- 作者:
Peng Huang;Jianyu Fu;Yihong Lu;Jinbiao Liu;Jian Zhang;Chen Dapeng - 通讯作者:
Chen Dapeng
Clinical and Population Studies Deficient CD 4 CD 25 T Regulatory Cell Function in Patients With Abdominal Aortic Aneurysms
腹主动脉瘤患者 CD 4 CD 25 T 调节细胞功能缺陷的临床和人群研究
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Ming;Jian Zhang;Yong Wang;Shao;D. Böckler;Z. Duan;S. Xin - 通讯作者:
S. Xin
Electrospinning synthesis of NiCo2O4 embedded N-doped carbon for high-performance supercapacitors
静电纺丝合成 NiCo2O4 嵌入氮掺杂碳用于高性能超级电容器
- DOI:
10.1016/j.est.2021.102665 - 发表时间:
2021-07 - 期刊:
- 影响因子:9.4
- 作者:
Jing Li;Yin Liu;Dan Zhan;Yongjin Zou;Fen Xu;Lixian Sun;Cuili Xiang;Jian Zhang - 通讯作者:
Jian Zhang
Jian Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Zhang', 18)}}的其他基金
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245607 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
From Covariance Regressions to Nonparametric Dynamic Causal Modelling (CoreDCM)
从协方差回归到非参数动态因果建模 (CoreDCM)
- 批准号:
EP/X038297/1 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
- 批准号:
2302087 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
NSF Showcase for DUE Projects at the ACM SIGCSE Symposium
NSF 在 ACM SIGCSE 研讨会上展示 DUE 项目
- 批准号:
2245139 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Realistic fault modelling to enable optimization of low power IoT and Cognitive fault-tolerant computing systems
现实故障建模可优化低功耗物联网和认知容错计算系统
- 批准号:
EP/T026022/1 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Recent Developments in Noncommutative Algebra and Related Areas
非交换代数及相关领域的最新进展
- 批准号:
1764210 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Research in Noncommutative Algebra: Hopf Algebra Actions on Noetherian Artin-Schelter Regular Algebras and Noncommutative McKay Correspondence
非交换代数研究:Noetherian Artin-Schelter 正则代数上的 Hopf 代数作用和非交换麦凯对应
- 批准号:
1700825 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: Real Time Spectroscopic Studies of Hybrid MOF Photocatalysts for Solar Fuel Production
合作研究:用于太阳能燃料生产的混合 MOF 光催化剂的实时光谱研究
- 批准号:
1706632 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Collaborative Research: Spatial Skills and Success in Introductory Computing
协作研究:空间技能和入门计算的成功
- 批准号:
1711780 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似海外基金
RUI: Predictive models with Incomplete and Fragmented Observations, and New Advances in Virtual Re-sampling for Big Data
RUI:具有不完整和碎片观测的预测模型,以及大数据虚拟重采样的新进展
- 批准号:
2310504 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
New Advances in Multisegment Injection-Capillary Electrophoresis-Mass Spectrometry for Accelerating Biomarker Discovery in Metabolomics
多段注射-毛细管电泳-质谱法加速代谢组学生物标志物发现的新进展
- 批准号:
RGPIN-2020-06630 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
BRITE Pivot: Tissue Research Advances for New Surgeries-Facilitating Organ Reconstruction with Mechanics
BRITE 支点:新手术的组织研究进展——利用力学促进器官重建
- 批准号:
2135683 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
CAS: New Advances in Sustainable Catalysis
CAS:可持续催化的新进展
- 批准号:
2152566 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
What controls the flow resistance of rough-bed rivers? Major new advances from high-resolution topography
是什么控制着粗糙河床的水流阻力?
- 批准号:
NE/W00125X/1 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Landing Advances for a New Decade One "LANDOne"
新十年“LANDOne”登陆进展
- 批准号:
10002411 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
BEIS-Funded Programmes
New advances in cyclopentadiene based materials
环戊二烯基材料新进展
- 批准号:
2204077 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
New Advances in Multisegment Injection-Capillary Electrophoresis-Mass Spectrometry for Accelerating Biomarker Discovery in Metabolomics
多段注射-毛细管电泳-质谱法加速代谢组学生物标志物发现的新进展
- 批准号:
RGPIN-2020-06630 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: WoU-MMA: New Advances to Enable Multi-Messenger Neutrino Astrophysics with the Radio Neutrino Observatory in Greenland
合作研究:WoU-MMA:与格陵兰岛射电中微子天文台实现多信使中微子天体物理学的新进展
- 批准号:
2112352 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Standard Grant