CDS&E: D3SC: Applying Video Segmentation to Coarse-grain Mapping Operators in Molecular Simulations
CDS
基本信息
- 批准号:1764415
- 负责人:
- 金额:$ 48.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Andrew White and Chenliang Xu of the University of Rochester is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to apply advances in computer vision to improve models of multiscale systems in chemistry. Multiscale systems describe chemical and physical processes that occur on many different time and spatial scales, for example, both very fast and very slow motions may contribute to the overall process. In both the computer processing of videos and the modeling of multiscale chemical systems, reducing complexity via removing extraneous details is essential. Without removing some model details, simulating multiscale processes like DNA transcription or the peptide aggregation which leads to plaque formation in Alzheimer's disease is impossible. Current approaches to reduce the number of atoms in a model rely on intuition and tradition due to the near infinite ways in which atoms can be removed or combined. White, Xu and their research groups are developing a novel approach built upon advances in video segmentation. Video segmentation is the process of identifying foreground, background, and objects in a video. Surprisingly, the same mathematical structure can be applied to chemical systems and that is the goal of this research. White, Xu and their collaborators will introduce the research to a broader audience via an augmented-reality laboratory for students. Students will be able to decide how to simplify molecular models and see the results by combining the visual experience of augmented-reality with the interactivity of molecular simulations. Coarse-graining (CG) is the dimension reduction technique used to simulate multiscale systems more efficiently. There is not a rigorous theory for generating mappings from all-atom (fine-grain) system to the CG system. This missing component is essential because past CG work shows that many mappings lead to homogeneous, weakly interacting, gas-like CG models but the number of possible mappings is combinatorial with respect to the number of atoms. Andrew White and his collaborators are working to solve this mapping problem by (i) developing a theory to represent mapping algorithms based on video segmentation algorithms; (ii) creating a database of mappings and their performance on benchmark simulations to foster community involvement; (iii) studying and testing these methods on multi-protein surface interactions, where current mapping approaches struggle. Achieving success here, along with recent advances in calculating CG potentials, will better advance the community's ability to model complex multiscale phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罗切斯特大学的Andrew白色和Chenliang Xu获得了化学系化学理论,模型和计算方法项目的奖项,以应用计算机视觉的进步来改进化学中多尺度系统的模型。 多尺度系统描述了在许多不同的时间和空间尺度上发生的化学和物理过程,例如,非常快和非常慢的运动都可能有助于整个过程。 在视频的计算机处理和多尺度化学系统的建模中,通过去除无关的细节来降低复杂性是必不可少的。如果不去除一些模型细节,模拟多尺度过程,如DNA转录或导致阿尔茨海默病斑块形成的肽聚集是不可能的。目前减少模型中原子数量的方法依赖于直觉和传统,因为原子可以被移除或组合的方式几乎是无限的。白色,徐和他们的研究小组正在开发一种新的方法,建立在视频分割的进步。视频分割是识别视频中的前景、背景和对象的过程。令人惊讶的是,相同的数学结构可以应用于化学系统,这就是本研究的目标。白色,徐和他们的合作者将通过一个面向学生的增强现实实验室向更广泛的受众介绍这项研究。学生将能够决定如何简化分子模型,并通过将增强现实的视觉体验与分子模拟的交互性相结合来查看结果。粗粒化(CG)是一种用于更有效地模拟多尺度系统的降维技术。从全原子(细颗粒)系统到CG系统的映射还没有一个严格的理论。这个缺失的部分是必不可少的,因为过去的CG工作表明,许多映射导致均匀的,弱相互作用的,气体样的CG模型,但可能的映射的数量是组合相对于原子的数量。Andrew白色和他的合作者正在努力解决这个映射问题,方法是:(i)开发一种理论来表示基于视频分割算法的映射算法;(ii)创建一个映射数据库及其在基准模拟上的性能,以促进社区参与;(iii)在多蛋白质表面相互作用上研究和测试这些方法,目前的映射方法正在努力。在这里取得成功,沿着计算CG潜力的最新进展,将更好地提高社区模拟复杂多尺度现象的能力。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Audio-Visual Interpretable and Controllable Video Captioning
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Yapeng Tian;Chenxiao Guan;Justin Goodman;Marc Moore;Chenliang Xu
- 通讯作者:Yapeng Tian;Chenxiao Guan;Justin Goodman;Marc Moore;Chenliang Xu
Discover and Mitigate Unknown Biases with Debiasing Alternate Networks
- DOI:10.48550/arxiv.2207.10077
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Zhiheng Li;A. Hoogs;Chenliang Xu
- 通讯作者:Zhiheng Li;A. Hoogs;Chenliang Xu
GAN-EM: GAN based EM learning framework
- DOI:10.24963/ijcai.2019/612
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Wentian Zhao;Shaojie Wang;Zhihuai Xie;Jing Shi;Chenliang Xu
- 通讯作者:Wentian Zhao;Shaojie Wang;Zhihuai Xie;Jing Shi;Chenliang Xu
Discover the Unknown Biased Attribute of an Image Classifier
- DOI:10.1109/iccv48922.2021.01470
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Zhiheng Li;Chenliang Xu
- 通讯作者:Zhiheng Li;Chenliang Xu
Sound to Visual: Hierarchical Cross-Modal Talking Face Video Generation
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Lele Chen;Haitian Zheng;Ross K Maddox;Zhiyao Duan;Chenliang Xu
- 通讯作者:Lele Chen;Haitian Zheng;Ross K Maddox;Zhiyao Duan;Chenliang Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew White其他文献
Terrestrial Laser Scanning: An Operational Tool for Fuel Hazard Mapping?
地面激光扫描:燃料危险绘图的操作工具?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
L. Wallace;Samuel Hillman;B. Hally;Ritu Taneja;Andrew White;J. McGlade - 通讯作者:
J. McGlade
Mixed Method Approach Towards the Life of University Students During the COVID-19 Pandemic
COVID-19 大流行期间大学生生活的混合方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Raihan K Khan;Andrew White;T. Jehi - 通讯作者:
T. Jehi
Glaucoma Detection and Staging from Visual Field Images using Machine Learning Techniques
使用机器学习技术从视野图像进行青光眼检测和分期
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
N. Akter;J. Gordon;Sherry Li;Mikki Poon;Stuart W. Perry;J. Fletcher;Thomas Chan;Andrew White;Maitreyee Roy - 通讯作者:
Maitreyee Roy
Beyond the walls of Camden & Islington personality disorder service: a qualitative study of clinical consultation to external services
卡姆登城墙之外
- DOI:
10.1080/02668734.2021.1953116 - 发表时间:
2021 - 期刊:
- 影响因子:0.8
- 作者:
Andrew White;A. Herbert;Pierise Marshall - 通讯作者:
Pierise Marshall
Central Australian Rheumatic Heart Disease Control Program: A report to the Commonwealth November 2002
澳大利亚中部风湿性心脏病控制计划:2002 年 11 月向联邦提交的报告
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
A. Brown;Lynette Purton;G. Schaeffer;G. Wheaton;Andrew White;null Central Australian Rhd Steerin - 通讯作者:
null Central Australian Rhd Steerin
Andrew White的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew White', 18)}}的其他基金
2019-EEID US-UK Heterogeneities, Diversity and the Evolution of Infectious Disease
2019-EEID 美国-英国传染病的异质性、多样性和演变
- 批准号:
BB/V00378X/1 - 财政年份:2020
- 资助金额:
$ 48.86万 - 项目类别:
Research Grant
CAREER: Multiscale Modeling of Peptide Self-Assembly with Experiment Directed Simulation
职业:通过实验引导模拟进行肽自组装的多尺度建模
- 批准号:
1751471 - 财政年份:2018
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
Mathematical Modelling Tools for Conservation and Disease Management
用于保护和疾病管理的数学建模工具
- 批准号:
NE/M021319/1 - 财政年份:2015
- 资助金额:
$ 48.86万 - 项目类别:
Research Grant
Study of Research and Development Statistics at the National Science Foundation
美国国家科学基金会研究与发展统计研究
- 批准号:
0244598 - 财政年份:2002
- 资助金额:
$ 48.86万 - 项目类别:
Contract
Partial Support of the Core Activities of the Committee on National Statistics
部分支持国家统计委员会的核心活动
- 批准号:
9709489 - 财政年份:1997
- 资助金额:
$ 48.86万 - 项目类别:
Continuing Grant
Renovation of a Facility for High Energy Physics Detector Development
高能物理探测器开发设施改造
- 批准号:
9214210 - 财政年份:1992
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: D3SC: CDS&E: Predictive Discovery of Porphyrin Molecules and their Response Properties using Smart Objects-Enabled Machine Learning
合作研究:D3SC:CDS
- 批准号:
2055668 - 财政年份:2021
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
- 批准号:
2105032 - 财政年份:2021
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
- 批准号:
2105005 - 财政年份:2021
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
D3SC: Dynamic Effects in Ordinary Organic Reactions in Solution
D3SC:溶液中普通有机反应的动态效应
- 批准号:
2102647 - 财政年份:2021
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
Collaborative Research: D3SC: CDS&E: Predictive Discovery of Porphyrin Molecules and their Response Properties using Smart Objects-Enabled Machine Learning
合作研究:D3SC:CDS
- 批准号:
2055669 - 财政年份:2021
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
D3SC: Developing Data-Driven, Automated Methodology to Understand and Control Light-Driven Catalytic Processes
D3SC:开发数据驱动的自动化方法来理解和控制光驱动的催化过程
- 批准号:
2102460 - 财政年份:2021
- 资助金额:
$ 48.86万 - 项目类别:
Continuing Grant
D3SC: CDS&E: Collaborative Research: Development and application of accurate, transferable and extensible deep neural network potentials for molecules and reactions
D3SC:CDS
- 批准号:
2041108 - 财政年份:2020
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
D3SC: Collaborative Research: Overcoming Challenges in Classification Near the Limit of Determination
D3SC:协作研究:克服接近确定极限的分类挑战
- 批准号:
2003867 - 财政年份:2020
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
D3SC: Signaling Axes Modulated by Cyclic Dinucleotides
D3SC:环状二核苷酸调节的信号轴
- 批准号:
2004102 - 财政年份:2020
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant
D3SC: Collaborative Research: Overcoming Challenges in Classification Near the Limit of Determination
D3SC:协作研究:克服接近确定极限的分类挑战
- 批准号:
2003839 - 财政年份:2020
- 资助金额:
$ 48.86万 - 项目类别:
Standard Grant