D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
基本信息
- 批准号:2105032
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Environmental Chemical Sciences Program of the NSF Division of Chemistry, Professors Huichun Zhang of Case Western Reserve University and Dong Wang of University of Illinois Urbana—Champaign will develop machine learning models to predict the reactivity of thousands of organic contaminants (OCs) in engineered (water) and natural (soil and sediment) environments. To assess and mitigate risks associated with this vast number of OCs, accurate predictive models are needed to readily provide reasonable estimates of their reactivity, both during important water treatment processes and in the environment. However, existing models rely heavily on conventional statistical methods. They have multiple limitations such as small numbers and narrow scopes of OCs involved and lengthy calculations of molecular properties. The project will employ advanced machine learning algorithms to predict contaminant reactivities. The obtained machine learning models will help identify OCs of concern and optimize the treatment processes. In addition, environmental data science will be developed as a new educational track at the pilot scale. Graduate, undergraduate and high school students with diverse backgrounds will be engaged in interdisciplinary research, including modeling and experimental work. The project also plans hands-on activities on OCs for girls in grade 6-12 and underrepresented college students. This study will systematically develop comprehensive and accurate machine learning models for predicting the reactivity of thousands of OCs in advanced oxidation processes (AOPs), adsorption onto engineered adsorbents, sorption onto soils and sediments, and biodegradation. The objectives of this research are to 1) mine the literature and available databases to obtain the largest datasets of contaminant reactivity in AOPs, (ad)sorption and biodegradation; 2) experimentally quantify the reactivity of selected OCs in AOPs, (ad)sorption and biodegradation; 3) develop confidence-aware machine learning models for the reactivity of OCs based on the data from the above two objectives; and 4) interpret the obtained models to make them trustable and define their applicability domains. OCs will be modeled by new chemical representations including molecular fingerprints, molecular images, and different combinations of them with molecular descriptors. Including (ad)sorbent properties in the (ad)sorption models will be a major step to expand the model applicability to diverse (ad)sorbent structures and properties. Properly interpreting and modifying the obtained models and calculating model confidence bounds will make the obtained models trustable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国国家科学基金会化学部环境化学科学项目的支持下,凯斯西储大学的张惠春教授和伊利诺伊大学香槟分校的王东教授将开发机器学习模型来预测数千种有机污染物(OC)的反应性工程(水)和自然(土壤和沉积物)环境。为了评估和减轻与大量OC相关的风险,需要准确的预测模型来提供其反应性的合理估计,无论是在重要的水处理过程中还是在环境中。然而,现有的模型严重依赖于传统的统计方法。它们具有多个局限性,例如所涉及的OC数量少且范围窄,以及分子性质的冗长计算。该项目将采用先进的机器学习算法来预测污染物的反应性。所获得的机器学习模型将有助于识别关注的OC并优化处理过程。此外,环境数据科学将作为一个新的教育轨道在试点规模发展。具有不同背景的研究生,本科生和高中生将从事跨学科研究,包括建模和实验工作。该项目还计划为6-12年级的女孩和代表性不足的大学生开展关于组织委员会的实践活动。 该研究将系统地开发全面准确的机器学习模型,用于预测高级氧化过程(AOP)中数千种OC的反应性,吸附到工程吸附剂上,吸附到土壤和沉积物上以及生物降解。本研究的目标是:1)挖掘文献和可用数据库,以获得最大的AOPs中污染物反应性、(ad)吸附和生物降解的数据集; 2)实验量化AOPs中选定的OCs的反应性、(ad)吸附和生物降解; 3)基于上述两个目标的数据,开发用于OCs反应性的置信度感知机器学习模型;(4)对所得到的模型进行解释,使其可信,并定义其适用范围。OC将通过新的化学表示法建模,包括分子指纹,分子图像,以及它们与分子描述符的不同组合。在吸附模型中加入吸附剂的性质是将模型适用性扩展到不同吸附剂结构和性质的重要一步。正确地解释和修改所获得的模型和计算模型的置信界限将使所获得的模型trustable.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Wang其他文献
应用于锂离子电池隔膜的高性能无机Al2O3/PVA-co-PE 纳米纤维膜
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:6.6
- 作者:
Ke Liu;Mufang Li;Wenwen Wang;Dong Wang - 通讯作者:
Dong Wang
Holographic superconductors in 4D Einstein-Gauss-Bonnet gravity
4D 爱因斯坦-高斯-邦尼特引力中的全息超导体
- DOI:
10.1007/jhep12(2020)192 - 发表时间:
2020-05 - 期刊:
- 影响因子:5.4
- 作者:
Xiongying Qiao;Liang OuYang;Dong Wang;Qiyuan Pan;Jiliang Jing - 通讯作者:
Jiliang Jing
Successive Approximation Voltage Regulation Method for Vertical STM Array
垂直STM阵列的逐次逼近电压调节方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dong Wang;Song Ding;Yuanhang Zhou;Qinsong Qian - 通讯作者:
Qinsong Qian
Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data
测试并支持矩阵值观测的相关结构恢复,并将其应用于股票市场数据
- DOI:
10.1016/j.jeconom.2021.09.014 - 发表时间:
2020-06 - 期刊:
- 影响因子:6.3
- 作者:
Xi Chen;Dan Yang;Yan Xu;Yin Xia;Dong Wang;Haipeng Shen - 通讯作者:
Haipeng Shen
Wearable thermoelectric 3D spacer fabric containing a photothermal ZrC layer with improved power generation efficiency
含有光热 ZrC 层的可穿戴热电 3D 间隔织物,可提高发电效率
- DOI:
10.1016/j.enconman.2021.114432 - 发表时间:
2021-09 - 期刊:
- 影响因子:10.4
- 作者:
Mufang Li;Jiaxin Chen;Mengying Luo;Weibing Zhong;Wen Wang;Xing Qing;Ying Lu;Liyan Yang;Qiongzhen Liu;Yuedan Wang;Dong Wang - 通讯作者:
Dong Wang
Dong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dong Wang', 18)}}的其他基金
FairFL-MC: A Metacognitive Calibration Intervention Powered by Fair and Private Machine Learning
FairFL-MC:由公平和私人机器学习支持的元认知校准干预
- 批准号:
2202481 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
High-Valent Non-Oxo-Metal Complexes of Late Transition Metals For sp3 C–H Bond Activation
用于 sp3 C–H 键活化的后过渡金属高价非氧代金属配合物
- 批准号:
2102339 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
- 批准号:
2140999 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
- 批准号:
2131622 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
- 批准号:
2130263 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CHS: Small: DeepCrowd: A Crowd-assisted Deep Learning-based Disaster Scene Assessment System with Active Human-AI Interactions
CHS:小型:DeepCrowd:一种基于人群辅助、基于深度学习的灾难场景评估系统,具有主动人机交互功能
- 批准号:
2008228 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
- 批准号:
1845639 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
SCC: Smart Water Crowdsensing: Examining How Innovative Data Analytics and Citizen Science Can Ensure Safe Drinking Water in Rural Versus Suburban Communities
SCC:智能水群体感知:研究创新数据分析和公民科学如何确保农村和郊区社区的安全饮用水
- 批准号:
1831669 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: Smart Water Sensing for Sustainable and Connected Communities Using Citizen Science
EAGER:利用公民科学为可持续和互联社区提供智能水传感
- 批准号:
1637251 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CRII: CPS: Towards Reliable Cyber-Physical Systems using Unreliable Human Sensors
CRII:CPS:使用不可靠的人体传感器实现可靠的网络物理系统
- 批准号:
1566465 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant