The Geometry of Measures and Analytic Properties of Associated Operators

测度几何和关联算子的解析性质

基本信息

  • 批准号:
    1800015
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This project concerns a study of the some of the mathematics behind two basic physical questions. The first question considered is to what extent can the geometry of a body be determined from information about a force field associated to the body (for instance its gravitational field)? Such inverse problems in potential theory have a rich history, but the mathematical tools needed to answer this question are currently underdeveloped. The investigation will focus especially on what can be said if one only knows that the field has bounded magnitude, which is of particular interest in applications. A second question to be explored is how, and to what degree of accuracy, can one determine the asymptotic (or long term) behavior of a random function that evolves with time, based on certain empirical measurements? More specifically, the principal investigator proposes to research several questions concerning the relationship between the geometrical properties of a measure and the regularity properties of an associated operator. The primary question of interest is the following: What can be deduced about a measure from the knowledge that singular integral operator associated to it has good regularity properties? Under these circumstances, can the measure have a fractal structure, or must its support be contained in (a countable number of) Lipschitz sub-manifolds of appropriate dimension? Attempts to solve this problem has led to theory which has found recent applications in the calculus of variations, the study of free boundary problems, and the geometry of harmonic measure. The principal investigator intends to further develop tools that serve as a bridge from the analytic condition on the singular integral operator to the geometric structure of the measure. A second topic of research concerns understanding the long-term behavior of a stationary Gaussian process given information about its spectral measure, building upon recent work involving the principal investigator.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及两个基本物理问题背后的一些数学研究。 首先要考虑的问题是,在多大程度上可以根据与物体有关的力场(例如它的引力场)的信息来确定物体的几何形状? 在势理论中,这样的逆问题有着丰富的历史,但回答这个问题所需的数学工具目前还不发达。 调查将特别集中在什么可以说,如果一个人只知道,该领域有界的幅度,这是特别感兴趣的应用。 第二个要探讨的问题是,如何以及在何种程度上的准确性,可以确定的渐近(或长期)行为的随机函数,随着时间的推移,根据一定的经验测量?更具体地说,主要研究者提出了研究几个问题的几何性质之间的关系的措施和相关的运营商的正则性。感兴趣的主要问题是:什么可以推导出的知识,奇异积分算子相关的措施,它具有良好的正则性? 在这种情况下,测度是否具有分形结构,或者它的支集是否必须包含在适当维数的Lipschitz子流形中(可数个)?试图解决这个问题导致了理论发现最近的应用在变分法,研究自由边界问题,几何调和措施。 主要研究者打算进一步开发工具,作为桥梁,从奇异积分算子的分析条件的几何结构的措施。第二个研究课题是基于主要研究者最近的工作,在给定其光谱测量信息的情况下,了解平稳高斯过程的长期行为。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Small local action of singular integrals on spaces of non-homogeneous type
非齐次空间上奇异积分的小局部作用
  • DOI:
    10.4171/rmi/1196
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaye, Benjamin;Merchán, Tomás
  • 通讯作者:
    Merchán, Tomás
The measures with an associated square function operator bounded in L2
具有 L2 范围内关联平方函数运算符的度量
  • DOI:
    10.1016/j.aim.2018.09.025
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Jaye, Benjamin;Nazarov, Fedor;Tolsa, Xavier
  • 通讯作者:
    Tolsa, Xavier
Remarks on the Rényi Entropy of a Sum of IID Random Variables
关于 IID 随机变量之和的 Rényi 熵的评论
  • DOI:
    10.1109/tit.2019.2961080
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jaye, Benjamin;Livshyts, Galyna V.;Paouris, Grigoris;Pivovarov, Peter
  • 通讯作者:
    Pivovarov, Peter
Reflectionless measures for Calderón–Zygmund operators II: Wolff potentials and rectifiability
Calderón-Zygmund 算子的无反射措施 II:Wolff 势和可修正性
On the problem of existence in principal value of a Calderón–Zygmund operator on a space of non‐homogeneous type
非齐次型空间上卡尔德隆-齐格蒙德算子主值的存在性问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Jaye其他文献

Benjamin Jaye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Jaye', 18)}}的其他基金

The Geometry of Measures and Analytic Properties of Associated Operators
测度几何和关联算子的解析性质
  • 批准号:
    2103534
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Analysis of Operators on Rough Sets
职业:粗糙集算子分析
  • 批准号:
    2049477
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Analysis of Operators on Rough Sets
职业:粗糙集算子分析
  • 批准号:
    1847301
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
The Geometry of Measures and Regularity of Associated Operators
措施的几何性和关联算子的规律性
  • 批准号:
    1830128
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
The Geometry of Measures and Regularity of Associated Operators
措施的几何性和关联算子的规律性
  • 批准号:
    1500881
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CBMS Conference: Introduction to the theory of valuations on convex sets
CBMS 会议:凸集估值理论简介
  • 批准号:
    1444411
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Kent State Informal Analysis Seminar
肯特州立非正式分析研讨会
  • 批准号:
    1400019
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Non-tariff measures and the Global Value Chains
非关税措施和全球价值链
  • 批准号:
    24K16361
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
  • 批准号:
    2340006
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
  • 批准号:
    2403698
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Estimating Risk Measures, with Applications to Finance and Nuclear Safety
评估风险措施,并应用于金融和核安全
  • 批准号:
    2345330
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Our health counts: population-based measures of urban Indigenous health determinants, health status, and health care access across two cities in New Brunswick
我们的健康很重要:新不伦瑞克省两个城市的城市土著健康决定因素、健康状况和医疗保健获取情况的基于人口的衡量标准
  • 批准号:
    489076
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Operating Grants
Primary care quality for older adults: practice-based quality measures derived from a RAND/UCLA appropriateness method study
老年人初级保健质量:源自兰德/加州大学洛杉矶分校适当性方法研究的基于实践的质量衡量标准
  • 批准号:
    495174
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Engaging Patient and Caregivers in Using Patient-reported Outcomes Measures in Pediatric Clinical Care for Asthma
让患者和护理人员参与儿科哮喘儿科临床护理中患者报告的结果测量
  • 批准号:
    495593
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Development and validation of a composite measure of physical function using a battery of performance-based measures: A longitudinal analyses of the Canadian Longitudinal Study on Aging
使用一系列基于表现的测量方法开发和验证身体机能的综合测量方法:加拿大老龄化纵向研究的纵向分析
  • 批准号:
    499193
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了