Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
基本信息
- 批准号:2403698
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award provides support for an international research conference on the geometry of measures and free boundaries, to take place July 22–26, 2024 at the University of Washington, Seattle. The conference lies at the intersection of calculus of variations, geometric measure theory, harmonic analysis, and partial differential equations. The event will include pre-conference introductory minicourses for PhD students, to be held July 20–21, 2024. Funding from this award will support travel expenses for non-local speakers and other participants in the conference and the minicourses, with priority for participant support given to PhD students, postdocs, and researchers without access to other sources of funding.The subject of Geometric Measure Theory encompasses a range of analytical tools used to describe the size and structure of sets with a geometric flavor, and the theory of Free Boundary Problems addresses the challenge of characterizing unknown interfaces that adhere to specified constraints, often described by a partial differential equation. Free Boundary Problems arise in several disciplines outside of pure mathematics, including physics, finance, and biology. Contemporary geometric measure theory in metric spaces is parallel to applied research on the problem of identifying manifold structure in large data sets. The two main topics of the conference are linked through a spectrum of notions of lower-order and higher-order regularity of sets. By convening current practitioners in geometric measure theory, free boundary problems, and related areas of geometric and harmonic analysis to share their perspectives and report on the latest advances, the conference seeks to strengthen the connections between the subjects, to shed light on shared principles, and to facilitate novel solutions to longstanding problems. The conference website is https://sites.google.com/view/gmfbseattle2024/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为措施和自由边界的几何形状的国际研究会议提供支持,将于2024年7月22日至26日在西雅图的华盛顿大学举行。会议在于变分法,几何测量理论,调和分析和偏微分方程的交叉点。该活动将包括会前介绍博士生的迷你课程,将于2024年7月20日至21日举行。该奖项的资金将用于支持非本地演讲者和其他与会者参加会议和小型课程的差旅费,并优先支持博士生,博士后和研究人员,而无需获得其他资金来源。几何测量理论的主题包括一系列用于描述具有几何风味的集合的大小和结构的分析工具,自由边界问题的理论解决了表征遵循特定约束的未知界面的挑战,这些约束通常由偏微分方程描述。自由边界问题出现在纯数学之外的几个学科中,包括物理学,金融学和生物学。度量空间中的当代几何测度理论与大型数据集中流形结构识别问题的应用研究是并行的。会议的两个主要议题是通过一系列的概念,低阶和高阶正则集。通过召集几何测量理论,自由边界问题以及几何和调和分析相关领域的当前从业者分享他们的观点并报告最新进展,会议旨在加强学科之间的联系,阐明共同的原则,并促进长期问题的新解决方案。会议网站是https://sites.google.com/view/gmfbseattle2024/This奖反映了NSF的法定使命,并已被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bobby Wilson其他文献
Modified Scattering of Cubic Nonlinear Schr\"odinger Equation on Rescaled Waveguide Manifolds
重定标波导流形上三次非线性薛定谔方程的修正散射
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bobby Wilson;Xueying Yu - 通讯作者:
Xueying Yu
Energy transfer for solutions to the nonlinear Schr"odinger equation on irrational tori
无理环上非线性薛定格方程解的能量传递
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Alexander Hrabski;Yulin Pan;G. Staffilani;Bobby Wilson - 通讯作者:
Bobby Wilson
Distance sets bounds for polyhedral norms via effective dimension
距离通过有效尺寸设置多面体范数的界限
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Iqra Altaf;Ryan E. G. Bushling;Bobby Wilson - 通讯作者:
Bobby Wilson
Self-similar sets and Lipschitz graphs
自相似集和 Lipschitz 图
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Blair Davey;Silvia Ghinassi;Bobby Wilson - 通讯作者:
Bobby Wilson
Density Properties of Sets in Finite-Dimensional, Strictly Convex Banach Spaces
有限维、严格凸 Banach 空间中集合的密度性质
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bobby Wilson - 通讯作者:
Bobby Wilson
Bobby Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bobby Wilson', 18)}}的其他基金
CAREER: Regularity Theory of Measures and Dispersive Partial Differential Equations
职业:测度正则性理论和色散偏微分方程
- 批准号:
2142064 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Harmonic Analysis, Structure Theory of Measures, and Properties of Hamiltonian Dynamical Systems
调和分析、结构测度理论以及哈密顿动力系统的性质
- 批准号:
1856124 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Houston - Louis Stokes STEM Pathways and Research Alliance
休斯顿 - 路易斯斯托克斯 STEM 途径和研究联盟
- 批准号:
1911310 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Houston-Louis Stokes Alliance for Minority Participation:Senior Alliance
休斯顿-路易斯斯托克斯少数族裔参与联盟:高级联盟
- 批准号:
1407736 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Minority Undergraduate/Graduate Student Technical Presentation-Experience at the 2014 National Organization for the Professional Advancement of Black Chemists & Chemical Engine
少数族裔本科生/研究生技术演讲 - 2014 年全国黑人化学家职业发展组织的经历
- 批准号:
1449993 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Minority Undergraduate/Graduate Student Technical Presentation Experience at the 2013 NOBCChE Annual Technical Conference
2013年NOBCChE年度技术会议少数族裔本科生/研究生技术演讲经历
- 批准号:
1355313 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Science and Technology Enhancement Program (STEP)
科学技术增强计划(STEP)
- 批准号:
0624866 - 财政年份:2006
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Chemical and Biological Assessment of Endocrine Disruptors in Waterways of Southeast Texas
德克萨斯州东南部水道内分泌干扰物的化学和生物评估
- 批准号:
0401587 - 财政年份:2004
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Investigation of Coal, Coal Derived Prod. and Coal Catalysts
煤炭、煤炭衍生产品调查
- 批准号:
8704062 - 财政年份:1987
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
The Synthesis and Characterization of Some Poly(Pyrazol-1- Yl)borate Complexes of Zirconium (Iv) and of Niobium (Iv)
锆(Iv)和铌(Iv)的一些聚(吡唑-1-基)硼酸盐配合物的合成和表征
- 批准号:
7704572 - 财政年份:1977
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
- 批准号:
RGPIN-2015-05968 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Geometry of Sets and Measures in Euclidean and Non-Euclidean Spaces
欧几里得和非欧空间中的集合和测度的几何
- 批准号:
2154613 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Rectifiability and Fine Geometry of Sets, Radon Measures, Harmonic Functions, and Temperatures
集合的可整流性和精细几何、氡气测量、调和函数和温度
- 批准号:
2154047 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
- 批准号:
RGPIN-2015-05968 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Quantifying the influence of tibia and fibula geometry reconstruction errors on musculoskeletal model parameters and measures of cumulative load
量化胫骨和腓骨几何重建误差对肌肉骨骼模型参数和累积载荷测量的影响
- 批准号:
557335-2020 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
The Geometry of Measures and Analytic Properties of Associated Operators
测度几何和关联算子的解析性质
- 批准号:
2103534 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant