The Geometry of Measures and Regularity of Associated Operators

措施的几何性和关联算子的规律性

基本信息

  • 批准号:
    1830128
  • 负责人:
  • 金额:
    $ 6.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This project concerns a study of the some of the mathematics behind the following basic physical question: To what extent can the geometry of a body be determined from information about a force field associated to the body (for instance, its gravitational field)? Such inverse problems in potential theory have a rich history, but the mathematical tools needed to properly answer this question, especially in the case when the operator relating the force field to the mass distribution of the body is sensitive to long-range interactions, are currently underdeveloped. In this project, the principal investigator will develop tools to further understand this problem, concentrating especially on what can be said if one knows only that the field has bounded magnitude.More specifically, the project primarily concerns the relationship between the geometry of a measure and the regularity of an associated differential or singular integral operator. This is is a question that has attracted mathematicians ever since the Cauchy and Riesz transforms were introduced as tools to study the behavior of analytic and harmonic functions, respectively. An integrated approach to such problems is proposed that goes through the study of reflectionless measures. This approach has recently yielded several new results and could potentially address a number of open problems, especially those concerning the smoothness of the support of a measure that has a bounded Riesz transform. Here new tools in quantitative geometry and higher order partial differential equations need to be developed in order to make progress. Furthermore, the principal investigator seeks to build upon recent innovations in the theory of quasilinear differential equations to consider analogous problems for a wide range of nonlinear differential operators, where no integral representation is available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及以下基本物理问题背后的一些数学研究:在多大程度上可以从与物体相关的力场(例如,其引力场)的信息确定物体的几何形状? 这种反问题在位势理论中有着丰富的历史,但正确回答这个问题所需的数学工具,特别是在将力场与物体的质量分布联系起来的算子对长程相互作用敏感的情况下,目前还不发达。 在这个项目中,主要研究者将开发工具,以进一步了解这个问题,特别是集中在什么可以说,如果一个人只知道,该领域有界的大小。更具体地说,该项目主要关注的是一个措施的几何形状和相关的微分或奇异积分算子的正则性之间的关系。 这是一个问题,吸引了数学家自从柯西和Riesz变换被引入作为工具来研究的行为分析和调和函数,分别。 一个综合的方法来解决这些问题,提出了通过无反射措施的研究。 这种方法最近产生了一些新的结果,并可能解决一些开放的问题,特别是那些关于光滑的支持措施,有界Riesz变换。 在这里,新的工具,定量几何和高阶偏微分方程需要开发,以取得进展。此外,首席研究员寻求建立在准线性微分方程理论的最新创新,以考虑广泛的非线性微分算子的类似问题,其中没有积分表示。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the problem of existence in principal value of a Calderón–Zygmund operator on a space of non‐homogeneous type
非齐次型空间上卡尔德隆-齐格蒙德算子主值的存在性问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Jaye其他文献

Benjamin Jaye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Jaye', 18)}}的其他基金

The Geometry of Measures and Analytic Properties of Associated Operators
测度几何和关联算子的解析性质
  • 批准号:
    2103534
  • 财政年份:
    2020
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Continuing Grant
CAREER: Analysis of Operators on Rough Sets
职业:粗糙集算子分析
  • 批准号:
    2049477
  • 财政年份:
    2020
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Continuing Grant
CAREER: Analysis of Operators on Rough Sets
职业:粗糙集算子分析
  • 批准号:
    1847301
  • 财政年份:
    2019
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Continuing Grant
The Geometry of Measures and Analytic Properties of Associated Operators
测度几何和关联算子的解析性质
  • 批准号:
    1800015
  • 财政年份:
    2018
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Continuing Grant
The Geometry of Measures and Regularity of Associated Operators
措施的几何性和关联算子的规律性
  • 批准号:
    1500881
  • 财政年份:
    2015
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Continuing Grant
CBMS Conference: Introduction to the theory of valuations on convex sets
CBMS 会议:凸集估值理论简介
  • 批准号:
    1444411
  • 财政年份:
    2014
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Standard Grant
Kent State Informal Analysis Seminar
肯特州立非正式分析研讨会
  • 批准号:
    1400019
  • 财政年份:
    2014
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Continuing Grant
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Standard Grant
Non-tariff measures and the Global Value Chains
非关税措施和全球价值链
  • 批准号:
    24K16361
  • 财政年份:
    2024
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
  • 批准号:
    2340006
  • 财政年份:
    2024
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Continuing Grant
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
  • 批准号:
    2403698
  • 财政年份:
    2024
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Standard Grant
Estimating Risk Measures, with Applications to Finance and Nuclear Safety
评估风险措施,并应用于金融和核安全
  • 批准号:
    2345330
  • 财政年份:
    2024
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Standard Grant
Integrating Risk Perception Measures, Antecedents, and Outcomes
整合风险感知措施、前因和结果
  • 批准号:
    2243689
  • 财政年份:
    2023
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Continuing Grant
Development and Implementation of Participatory Urban Design Methodology for Introducing Climate Change Mitigation and Adaptation Measures
制定和实施参与式城市设计方法,引入气候变化减缓和适应措施
  • 批准号:
    23H01578
  • 财政年份:
    2023
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidating the mechanism that measures mitotic duration to prevent proliferation of defective cells
阐明测量有丝分裂持续时间以防止缺陷细胞增殖的机制
  • 批准号:
    23K05773
  • 财政年份:
    2023
  • 资助金额:
    $ 6.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Primary care quality for older adults: practice-based quality measures derived from a RAND/UCLA appropriateness method study
老年人初级保健质量:源自兰德/加州大学洛杉矶分校适当性方法研究的基于实践的质量衡量标准
  • 批准号:
    495174
  • 财政年份:
    2023
  • 资助金额:
    $ 6.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了