Controlling the energy flow in multi-component plasmonic structures for selective catalysis
控制多组分等离子体结构中的能量流以实现选择性催化
基本信息
- 批准号:1800197
- 负责人:
- 金额:$ 44.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Catalysts are materials that can activate a chemical transformation. The ability of catalysts to select a desired chemical product while avoiding undesired side reactions is a critical, but difficult objective. Making meaningful contributions in this direction would have a large impact on the field of chemical catalysis and across the field of chemistry generally. It was suggested recently that when illuminated with low intensity ultraviolet-visible light (i.e., from the Sun), small particles of silver and gold known as plasmonic metal nanoparticles can efficiently deposit energy into specific chemical transformations. This is in contrast to conventional, thermally-driven chemical reactions on metals where energy is indiscriminately distributed among every available reaction. In this project, Dr. Suljo Linic of the University of Michigan is developing an understanding of which physical properties govern the energy flow in plasmonic catalysts and how to control these properties. Developing these insights is critical for a targeted design of selective catalysts for specific chemical transformations. Dr. Linic is also engaged in a wide range of educational activities that build upon his research to promote engagement of students in science, technology, engineering and mathematics (STEM) disciplines. These activities include reaching out to high school and undergraduate students from underrepresented groups, as well as less conventional strategies aimed at improving the utilization of the World Wide Web in reaching students and the general public.With funding from the Chemical Catalysis Program of the Chemistry Division, Dr. Linic is developing a fundamental understanding of how electromagnetic energy flows through multicomponent plasmonic metal nanostructures. He is working on realizing the concept that light energy can be used to selectively activate specific chemical transformations by designing and controlling optical and electronic properties of multimetallic plasmonic nanostructures. He is testing the hypothesis that this objective can be accomplished by multicomponent plasmonic nanostructures with a relatively large plasmonic (Ag or Au) core (10s of nm), designed to harvest the resonant light energy, surrounded by a thin shell (~1 nm range) of a different material designed to drive specific chemical transformations using the harvested energy. He postulates that these structures would allow for complete control over the resonant energy flow at the nanoscale, funneling it efficiently into desired chemical transformations. He is employing a slate of characterization techniques including atomistic characterization of the geometric structure of the nanostructures, analysis of electronic and optical properties of the multicomponent plasmonic materials as well as vibrational and reaction spectroscopies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
催化剂是可以激活化学转化的材料。催化剂在避免不希望的副反应的同时选择所需的化学产品的能力是一个关键但困难的目标。在这个方向上做出有意义的贡献将对化学催化领域以及整个化学领域产生很大的影响。最近有人建议,当用低强度紫外线可见光照明(即来自太阳)时,被称为等离激元金属纳米颗粒的银和金颗粒可以有效地将能量沉积到特定的化学转化中。这与在每个可用反应中不可分犯的能量分布在金属上的传统,热驱动的化学反应相反。在这个项目中,密歇根大学的Suljo Linic博士正在对哪种物理性质控制等离激催化剂的能量流以及如何控制这些特性的理解。开发这些见解对于针对特定化学转化的选择性催化剂的目标设计至关重要。 Linic博士还从事广泛的教育活动,基于他的研究,以促进学生参与科学,技术,工程和数学(STEM)学科。这些活动包括接触高中和来自代表性不足的群体的本科生,以及较少的传统策略,旨在改善全球网络在吸引学生和公众的利用中。与化学催化计划的资助,Linic的化学催化计划是通过对多种多样的Metalsmosic proverment of Metalsmonic Flows -Nan nnan Nan Nan Nan Nan nnan n Nan n Nan n Nan n Nan n Nan n Nan nnan nnan nnan nnan nnan nnan nnan n Nan n nan nnan nnan nnan nnan nnan n an n n n an n n an nnan nnan nnan nnan nnan nnan nnan nnan nistic incement。他正在实现这样一个概念,即光能可用于通过设计和控制多金属等离子体纳米结构的光学和电子特性来选择性地激活特定的化学转化。他正在检验以下假设:该目标可以通过具有相对较大的等离激元(AG或AU)核(NM的10s)的多组分等离激元纳米结构来实现,旨在收获谐振光能,周围是由薄薄的壳(〜1 nm)包围,该壳(〜1 nm范围)的不同材料的不同材料旨在驱动特定的化学转化,旨在驱动特定的化学转化。他假设这些结构将允许对纳米级的共振能量完全控制,从而有效地将其汇入所需的化学转化中。他正在采用一系列特征技术,包括纳米结构几何结构的原子表征,分析多组分等离子材料的电子和光学特性以及振动和反应光谱。这项奖项反映了NSF的法定任务,并通过评估了基金会的范围,并通过基金会的范围进行了评估,并经过评估。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis
- DOI:10.1021/jacs.2c08561
- 发表时间:2022-10-24
- 期刊:
- 影响因子:15
- 作者:Elias, Rachel C.;Linic, Suljo
- 通讯作者:Linic, Suljo
Optimizing molecular light absorption in the strong coupling regime for solar energy harvesting
- DOI:10.1016/j.nanoen.2022.107244
- 发表时间:2022-04-13
- 期刊:
- 影响因子:17.6
- 作者:Chavez, Steven;Linic, Suljo
- 通讯作者:Linic, Suljo
Microkinetic modeling in electrocatalysis: Applications, limitations, and recommendations for reliable mechanistic insights
- DOI:10.1016/j.jcat.2021.08.043
- 发表时间:2021-12-15
- 期刊:
- 影响因子:7.3
- 作者:Baz, Adam;Dix, Sean T.;Linic, Suljo
- 通讯作者:Linic, Suljo
Critical Practices in Rigorously Assessing the Inherent Activity of Nanoparticle Electrocatalysts
- DOI:10.1021/acscatal.0c03028
- 发表时间:2020-09-18
- 期刊:
- 影响因子:12.9
- 作者:Dix, Sean T.;Lu, Shawn;Linic, Suljo
- 通讯作者:Linic, Suljo
In-operando surface-sensitive probing of electrochemical reactions on nanoparticle electrocatalysts: Spectroscopic characterization of reaction intermediates and elementary steps of oxygen reduction reaction on Pt
- DOI:10.1016/j.jcat.2021.02.009
- 发表时间:2021-04
- 期刊:
- 影响因子:7.3
- 作者:Sean T. Dix;S. Linic
- 通讯作者:Sean T. Dix;S. Linic
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suljo Linic其他文献
Suljo Linic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suljo Linic', 18)}}的其他基金
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
- 批准号:
2116646 - 财政年份:2021
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Maximizing efficiency in solar water splitting by engineering interfaces in hybrid photo-catalysts
通过混合光催化剂中的工程界面最大限度地提高太阳能水分解效率
- 批准号:
1803991 - 财政年份:2018
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
INFEWS N/P/H2O: Photo-thermal ammonia synthesis of plasmonic metal nanoparticles
INFEWS N/P/H2O:等离子体金属纳米粒子的光热氨合成
- 批准号:
1702471 - 财政年份:2017
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
- 批准号:
1362120 - 财政年份:2014
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
- 批准号:
1436056 - 财政年份:2014
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Studies of the impact of plasmonic metal nano-particles on co-catalysts/semiconductor photocatalysts in solar water splitting
等离子体金属纳米颗粒对太阳能分解水助催化剂/半导体光催化剂影响的研究
- 批准号:
1437601 - 财政年份:2014
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Conference: Kokes Awards for the 20th North American Catalysis Society Meeting, Detroit, Michigan, June 5-10, 2011
会议:第 20 届北美催化学会会议 Kokes 奖,密歇根州底特律,2011 年 6 月 5 日至 10 日
- 批准号:
1115990 - 财政年份:2011
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Designing Efficient Platinum-Free Electrocatalysts for Oxygen Reduction Reaction
设计用于氧还原反应的高效无铂电催化剂
- 批准号:
1132777 - 财政年份:2011
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
- 批准号:
1111770 - 财政年份:2011
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
相似国自然基金
miPEP398-miR398诱导亚低温条件下番茄种子活力的机制研究
- 批准号:32372677
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全基因组关联分析揭示ZmMGT1调控玉米种子活力的功能机理
- 批准号:32372161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
- 批准号:82371332
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
- 批准号:82371631
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
协同多精度活力测度的高密度城区公园供需评价与调控研究
- 批准号:52308066
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Biophysical-based approach for controlling blood vessel structure and function
基于生物物理学的控制血管结构和功能的方法
- 批准号:
9903445 - 财政年份:2018
- 资助金额:
$ 44.68万 - 项目类别:
Biophysical-based approach for controlling blood vessel structure and function
基于生物物理学的控制血管结构和功能的方法
- 批准号:
10075697 - 财政年份:2018
- 资助金额:
$ 44.68万 - 项目类别:
Controlling the flow of energy transduction through a protein medium via rational design
通过合理设计控制蛋白质介质中的能量转导流程
- 批准号:
1723613 - 财政年份:2016
- 资助金额:
$ 44.68万 - 项目类别:
Continuing Grant
Controlling the flow of energy transduction through a protein medium via rational design
通过合理设计控制蛋白质介质中的能量转导流程
- 批准号:
1507385 - 财政年份:2015
- 资助金额:
$ 44.68万 - 项目类别:
Continuing Grant
Fundamental research of washing method controlling the environmental load
控制环境负荷的洗涤方法基础研究
- 批准号:
17300227 - 财政年份:2005
- 资助金额:
$ 44.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)