Combinatorics and Asymptotics of Structure Constants from Representation Theory and Algebra
来自表示论和代数的结构常数的组合学和渐近学
基本信息
- 批准号:1800423
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symmetries and patterns capture the essence of our complex world and give the abstraction necessary to study it with algebraic and discrete methods. As objects change and interact, so do the inherent symmetries. How do symmetries combine, restrict, project or transform into other symmetries? How do we decompose a complex system of irreducible components? In general we want to describe this interaction quantitatively -- how many components of each type are contained in another bigger symmetry structure. While the computational complexity of the problem in general hints that no "closed-form" answer would exist, it is the goal of this project to find these numbers approximately and see how a typical structure looks like. These problems appear in many disguises, and lie at the intersection of combinatorics, algebra, representation theory, probability and statistical mechanics, and computational complexity theory. More precisely, the PI aims to solve problems in algebraic combinatorics involving "structure constants" and Young tableaux. Structure constants are generally defined as the multiplicities of irreducible symmetric or general linear group representations in the decomposition of tensor products or compositions, or, more generally, the nonnegtive integral coefficients in the decomposition of various symmetric functions in certain bases. The PI aims to determine the behavior of such constants -- asymptotics, positivity, relation to each other, combinatorial interpretation. Among the flagship problems and ultimate goals are: combinatorial interpretation for the Kronecker and plethysm coefficients, Foulkes' conjecture on the relative order of plethysm coefficients, asymptotics of Littlewood-Richardson and Kronecker coefficients, the asymptotic number of skew (semi)Standard Young tableaux in various growth regimes for the parameters, limit behavior of lozenge tilings of "skew" (general, nontrapezoidal) domains, inequalities of multiplicities in Geometric complexity Theory leading to obstructions distinguishing between polynomials, positivity of e-expansions for q-analogues of chromatic symmetric functions and Schur positivity for LLT polynomials. The methods range from extension of existing approaches in the PI's work, to further combination with methods from statistical mechanics like the variational principle, enumeration via large deviations, algebro-geometric interpretations, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性和模式抓住了我们复杂世界的本质,并给出了用代数和离散方法研究它所必需的抽象。随着物体的变化和相互作用,固有的对称性也在变化。对称性如何联合收割机、限制、投射或转化成其他对称性?我们如何分解一个由不可约成分组成的复杂系统?一般来说,我们想定量地描述这种相互作用--在另一个更大的对称结构中包含了多少种类型的成分。虽然这个问题的计算复杂性一般暗示不存在“封闭形式”的答案,但这个项目的目标是近似地找到这些数字,并看看典型的结构是什么样子。这些问题以许多伪装出现,并且位于组合学、代数、表示论、概率和统计力学以及计算复杂性理论的交叉点。更确切地说,PI旨在解决代数组合学中涉及“结构常数”和Young tableaux的问题。结构常数通常定义为不可约对称或一般线性群表示在张量积或合成分解中的重数,或者更一般地,在某些基中各种对称函数分解中的非连续积分系数。PI的目的是确定这些常数的行为-渐近性,积极性,相互关系,组合解释。主要问题和最终目标包括:Kronecker和体积系数的组合解释,体积系数相对阶的Foulkes猜想,Littlewood-Richardson和Kronecker系数的渐近性,参数在不同生长状态下的斜(半)标准Young表的渐近数,"斜"菱形镶嵌的极限行为。(一般,非梯形)域,几何复杂性理论中的多重性不等式导致了区分多项式的障碍,色对称函数的q-类似物的e-展开的正性和LLT多项式的Schur正性。方法范围从PI工作中现有方法的扩展,到与统计力学方法的进一步结合,如变分原理,通过大偏差枚举,代数几何解释等。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Greta Panova其他文献
Chromatic symmetric functions of Dyck paths and math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e674" altimg="si192.svg" class="math"miq/mi/math-rook theory
戴克路径的色对称函数与数学(xmlns:mml="http://www.w3.org/1998/Math/MathML" 显示="内联" id="d1e674" altimg="si192.svg" 类="数学"miq/mi/数学-车理论)
- DOI:
10.1016/j.ejc.2022.103595 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:0.900
- 作者:
Laura Colmenarejo;Alejandro H. Morales;Greta Panova - 通讯作者:
Greta Panova
Polynomiality of some hook-length statistics
- DOI:
10.1007/s11139-011-9332-z - 发表时间:
2012-01-11 - 期刊:
- 影响因子:0.700
- 作者:
Greta Panova - 通讯作者:
Greta Panova
Minimal skew semistandard tableaux and the Hillman--Grassl correspondence
最小倾斜半标准画面和 Hillman--Grassl 对应
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alejandro H. Morales;Greta Panova;GaYee Park - 通讯作者:
GaYee Park
The thermodynamic patterns of eukaryotic genes suggest a mechanism for intron–exon recognition
真核基因的热力学模式揭示了内含子-外显子识别的机制
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:16.6
- 作者:
M. Nedelcheva;M. Sarov;I. Yanakiev;Eva Mihailovska;Miroslav P Ivanov;Greta Panova;S. Stoynov - 通讯作者:
S. Stoynov
Diffusion of activated ATM explains γH2AX and MDC1 spread beyond the DNA damage site
激活的 ATM 的扩散解释了 γH2AX 和 MDC1 扩散到 DNA 损伤位点之外
- DOI:
10.1101/2023.10.02.560532 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Georgi Danovski;Greta Panova;Bradley Keister;Georgi Georgiev;K. Blagoev;S. Stoynov - 通讯作者:
S. Stoynov
Greta Panova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Greta Panova', 18)}}的其他基金
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302174 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Combinatorial Complexity Problems
合作研究:AF:小:组合复杂性问题
- 批准号:
2007652 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Combinatorics and Asymptotics of Structure Constants from Representation Theory and Algebra
来自表示论和代数的结构常数的组合学和渐近学
- 批准号:
1939717 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Algebraic, Combinatorial, and Analytic Applications of Symmetric Functions
对称函数的代数、组合和解析应用
- 批准号:
1500834 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
- 批准号:
2348566 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
- 批准号:
2422900 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Creating Hybrid Exponential Asymptotics for use with Computational Data
创建用于计算数据的混合指数渐近
- 批准号:
DP240101666 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Discovery Projects
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
- 批准号:
EP/X024555/1 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Fellowship
Asymptotics and ergodicity of hypoelliptic random processes
亚椭圆随机过程的渐近性和遍历性
- 批准号:
2246549 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
DE230101165 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Discovery Early Career Researcher Award
Dynamical and Spatial Asymptotics of Large Disordered Systems
大型无序系统的动力学和空间渐进
- 批准号:
2246664 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mean Field Asymptotics in Statistical Inference: Variational Approach, Multiple Testing, and Predictive Inference
统计推断中的平均场渐进:变分方法、多重测试和预测推断
- 批准号:
2210827 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
- 批准号:
2204397 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Asymptotics of Positive Temperature Models From Statistical Mechanics
统计力学正温度模型的渐进性
- 批准号:
2230262 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant