Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
基本信息
- 批准号:2348566
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award will fund a conference on Asymptotics in Complex Geometry to be held at Northwestern University, March 7-10, 2024. The purpose of this conference is to gather experts in the field of complex geometry, to report and understand the recent exciting discoveries and techniques. A common theme will be asymptotic techniques, in complex and algebraic geometry. The conference will facilitate collaboration across diverse areas within this subject and will introduce the rapid developments in this area to a new generation of mathematicians. The conference will be widely advertised to attract broad participation. In recent years, there has been much progress, including several major breakthroughs, in complex geometry. Much of this work lies at the intersection of two seemingly disparate fields: nonlinear geometric PDE and algebraic geometry. The existence of solutions to nonlinear PDEs in complex geometry, such as Kahler-Einstein metrics or constant scalar curvature Kahler metrics, is inextricably tied to algebro-geometric conditions involving subvarieties and algebraic degenerations. At the heart of these deep correspondences are questions of asymptotics. This conference will bring together experts on a wide range of related topics: PDEs in complex geometry; Non-Archimedean geometry; K-stability of singularities; Pluripotential theory. The conference website is: https://sites.google.com/view/asymptotics/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将资助将于2024年3月7日至10日在西北大学举行的复杂几何中的渐近学会议。这次会议的目的是聚集复杂几何领域的专家,报告和了解最近令人兴奋的发现和技术。一个共同的主题是复数和代数几何中的渐近技巧。这次会议将促进这一学科内不同领域的合作,并将向新一代数学家介绍这一领域的快速发展。会议将进行广泛的广告宣传,以吸引更多的人参加。近年来,在复杂几何方面取得了很大进展,包括几项重大突破。这项工作的大部分是两个看似完全不同的领域的交集:非线性几何偏微分方程组和代数几何。复杂几何中的非线性偏微分方程解的存在与涉及子簇和代数退化的代数几何条件密不可分,如Kahler-Einstein度量或常标量曲率Kahler度量。这些深刻对应的核心是渐近性问题。这次会议将汇集一系列相关主题的专家:复数几何中的偏微分方程组;非阿基米德几何;奇点的K稳定性;多势理论。会议的网站是:https://sites.google.com/view/asymptotics/This奖反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabor Szekelyhidi其他文献
Gabor Szekelyhidi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabor Szekelyhidi', 18)}}的其他基金
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2203218 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Thematic Month at CIRM in Complex Geometry
CIRM 复杂几何主题月
- 批准号:
1901659 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
CAREER: Canonical metrics and stability in complex geometry
职业:复杂几何中的规范度量和稳定性
- 批准号:
1350696 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Great Lakes Geometry Conference 2014
2014 年五大湖几何会议
- 批准号:
1359662 - 财政年份:2014
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Studying the relation between stability of algebraic varieties and the existence of extremal Kahler metrics.
研究代数簇的稳定性与极值卡勒度量的存在性之间的关系。
- 批准号:
EP/D065933/1 - 财政年份:2006
- 资助金额:
$ 3.5万 - 项目类别:
Fellowship
相似海外基金
Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
- 批准号:
2422900 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Creating Hybrid Exponential Asymptotics for use with Computational Data
创建用于计算数据的混合指数渐近
- 批准号:
DP240101666 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Projects
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
- 批准号:
EP/X024555/1 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Fellowship
Asymptotics and ergodicity of hypoelliptic random processes
亚椭圆随机过程的渐近性和遍历性
- 批准号:
2246549 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
DE230101165 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Early Career Researcher Award
Dynamical and Spatial Asymptotics of Large Disordered Systems
大型无序系统的动力学和空间渐进
- 批准号:
2246664 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Mean Field Asymptotics in Statistical Inference: Variational Approach, Multiple Testing, and Predictive Inference
统计推断中的平均场渐进:变分方法、多重测试和预测推断
- 批准号:
2210827 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
Spectral Asymptotics of Laplace Eigenfunctions
拉普拉斯本征函数的谱渐近
- 批准号:
2204397 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Asymptotics of Positive Temperature Models From Statistical Mechanics
统计力学正温度模型的渐进性
- 批准号:
2230262 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Transitions in Multivariate Asymptotics
多元渐近变换
- 批准号:
573402-2022 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
University Undergraduate Student Research Awards