Mean Field Asymptotics in Statistical Inference: Variational Approach, Multiple Testing, and Predictive Inference

统计推断中的平均场渐进:变分方法、多重测试和预测推断

基本信息

  • 批准号:
    2210827
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The era of big data poses unprecedented statistical and computational challenges in high-dimensional statistical inference. One challenge is the “dual objective” nature of various statistical inference tasks: statisticians hope to design procedures that achieve near-optimal statistical efficiency and satisfy desired validity guarantees even under model misspecification. Furthermore, many statistical inference procedures involve a Bayesian component, and performing exact Bayesian inference on large-scale datasets is computationally challenging. This project will address these challenges in some high dimensional statistical inference tasks. The techniques and methods developed in the project will further advance the interplay between a broad range of areas including high-dimensional statistics, statistical physics, optimization, information theory, and statistical machine learning. Results from this project are anticipated to have applicability in computational biology, computer vision, neuroscience, natural language processing, and multiple testing. Graduate and undergraduate students will be exposed to these results through involvement in the project, and the results will be incorporated in courses.This project aims to resolve statistical and computational challenges in multiple testing and predictive inference, using the mean field asymptotic theory of statistical inference. Focusing on a few stylized problems, the program consists of three major research thrusts: 1) analyze the non-convex landscape of Thouless-Anderson-Palmer (TAP) variational inference objective functions and design efficient algorithms for optimizing these functions; 2) in the task of false discovery rate (FDR) control, design procedures that maximize the number of discoveries when models are correctly specified while controlling the frequentist FDR even under model misspecification; and 3) in the task of predictive inference, design procedures that give reasonably small prediction sets while maintaining the frequentist validity of coverage in the presence of model misspecification. This research will develop new techniques for studying the mean field asymptotics of high-dimensional statistical models, which will likely be applicable beyond the specific statistical models and will be relevant in other areas of science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大数据时代对高维统计推断提出了前所未有的统计和计算挑战。一个挑战是各种统计推断任务的“双重目标”性质:统计学家希望设计出实现接近最佳统计效率的程序,即使在模型错误指定的情况下也能满足所需的有效性保证。此外,许多统计推断过程涉及贝叶斯组件,并且在大规模数据集上执行精确的贝叶斯推断在计算上具有挑战性。这个项目将解决这些挑战,在一些高维统计推断任务。该项目中开发的技术和方法将进一步推动包括高维统计、统计物理、优化、信息论和统计机器学习在内的广泛领域之间的相互作用。该项目的结果预计将适用于计算生物学,计算机视觉,神经科学,自然语言处理和多重测试。研究生和本科生将通过参与该项目来接触这些结果,并且结果将纳入课程中。该项目旨在使用统计推断的平均场渐近理论来解决多重测试和预测推断中的统计和计算挑战。该计划围绕几个典型问题,主要包括三个研究方向:1)分析Thouless-Anderson-Palmer(TAP)变分推理目标函数的非凸性,并设计优化这些函数的有效算法; 2)在错误发现率(FDR)控制任务中,设计程序,当模型被正确指定时,最大化发现的数量,同时即使在模型错误指定的情况下也控制频率论FDR; 3)在预测推理任务中,设计程序,给出合理小的预测集,同时在存在模型误指定的情况下保持覆盖的频率论有效性。这项研究将开发用于研究高维统计模型的平均场渐近性的新技术,这将可能适用于特定统计模型之外,并将在科学和工程的其他领域相关。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Song Mei其他文献

A Deep Reinforcement Learning-Based Transcoder Selection Framework for Blockchain-Enabled Wireless D2D Transcoding
基于深度强化学习的转码器选择框架,用于支持区块链的无线 D2D 转码
  • DOI:
    10.1109/tcomm.2020.2974738
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Liu Mengting;Teng Yinglei;Yu F. Richard;Leung Victor C. M.;Song Mei
  • 通讯作者:
    Song Mei
A study of SAR remote sensing of internal solitary waves in the north of the South China Sea: I. Simulation of internal tide transformation
南海北部内孤立波SAR遥感研究:一、内潮变换模拟
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song Mei;Zhang Yuanling;Fan Zhisong
  • 通讯作者:
    Fan Zhisong
Joint Routing and Resource Management in Energy Harvesting Aided Wireless Mesh Backhaul Networks
能量收集辅助无线网状回程网络中的联合路由和资源管理
  • DOI:
    10.6138/jit.2015.16.6.20150609b
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Wang Ya-Li;Wei Yi-Fei;Teng Ying-Lei;Song Mei;Wang Xiao-Jun
  • 通讯作者:
    Wang Xiao-Jun
Queue-aware energy minimisation through sparse beamforming in C-RAN
通过 C-RAN 中的稀疏波束成形实现队列感知能量最小化
  • DOI:
    10.1049/iet-com.2017.0492
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Ouyang Weiping;Teng Yinglei;Song Mei;Zhao Wanxin
  • 通讯作者:
    Zhao Wanxin
Research on Seamless Handover for WLAN with MIPv6
MIPv6 WLAN无缝切换研究

Song Mei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Song Mei', 18)}}的其他基金

CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
  • 批准号:
    2339904
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
  • 批准号:
    2315725
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
  • 批准号:
    21506066
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Field emission scanning electron microscope
场发射扫描电子显微镜
  • 批准号:
    532701230
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Major Research Instrumentation
Numerical simulations of lattice field theory
晶格场论的数值模拟
  • 批准号:
    2902259
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Billiard Field Theory
台球场论
  • 批准号:
    EP/Y023005/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
  • 批准号:
    EP/Z000688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
  • 批准号:
    EP/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
  • 批准号:
    2349136
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了