Forcing with Large Cardinals

强迫大红雀

基本信息

  • 批准号:
    1800613
  • 负责人:
  • 金额:
    $ 9.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

Our study of mathematics is carried out by means of rigorous deduction from axioms, i.e., proofs. It is well-known that the results of this study are incomplete, and may lead to statements which cannot be decided from the fundamental principles of mathematics (the ZFC axioms). Set theory is a field of mathematical logic which provides tools to analyze the consistency of mathematical statements. The systematic approach by which consistency results are obtained comes through the construction of alternative mathematical universes in which the consistency of various statements can be examined and validated. This project deals with several such construction methods. It aims to develop new methods to address several important problems in infinitary combinatorics, and to study existing methods and their limitations. The main objects of study are (i) algebras in set theory; (ii) diamond sequences, (iii) the Mitchell order; and (iv) inner models of hereditarily ordinal definable sets (HOD). In connection with (i), the project aims to study different notions of singular stationary, which were introduced by Foreman and Magidor, and make advancements in answering questions regarding Jonsson algebras. In connection with (ii), the project addresses diamond type principles and their interaction with compactness principles and cardinal arithmetic assumptions. In connection with (iii), the project aims to study the connection between forcing theory and inner model theory by studying problems concerning the consistency strength of various Mitchell order structures. In connection with (iv), the project aims to study the extent to which HOD is close to the set-theoretic universe V, and address the HOD-conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们对数学的研究是通过从公理中进行严格的演绎来进行的,即,证明。众所周知,这项研究的结果是不完整的,并可能导致无法从数学的基本原则(ZFC公理)决定的陈述。集合论是数理逻辑的一个领域,它提供了分析数学陈述的一致性的工具。系统的方法,其中获得的一致性结果来自通过建设替代数学宇宙中的各种声明的一致性可以检查和验证。本项目涉及几种这样的施工方法。它旨在开发新的方法来解决无穷组合学中的几个重要问题,并研究现有的方法及其局限性。主要的研究对象是(i)集合论中的代数;(ii)菱形序列;(iii)米切尔序;(iv)遗传序可定义集(HOD)的内部模型。关于(i),该项目旨在研究由Foreman和Magidor引入的奇异平稳的不同概念,并在回答有关Jonsson代数的问题方面取得进展。关于(二),该项目讨论了钻石型原则及其与紧凑性原则和基数算术假设的相互作用。 关于(iii),本课题通过研究各种Mitchell序结构的一致性强度问题,研究强迫理论与内模理论之间的关联。关于(iv),该项目旨在研究HOD接近集合论宇宙V的程度,并解决HOD猜想。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Itay Neeman其他文献

Two applications of finite side conditions at ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{docume
有限边条件在 ω2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek 的两个应用} setlength{oddsidemargin}{-69pt} egin{文档}$$omega _2$$end{文档
  • DOI:
    10.1007/s00153-017-0550-y
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Itay Neeman
  • 通讯作者:
    Itay Neeman
Unraveling Π 1 1 sets, revisited
  • DOI:
    10.1007/bf02771982
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Itay Neeman
  • 通讯作者:
    Itay Neeman
The domestic levels ofK c are iterable
  • DOI:
    10.1007/bf02773379
  • 发表时间:
    2001-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Alessandro Andretta;Itay Neeman;John Steel
  • 通讯作者:
    John Steel

Itay Neeman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Itay Neeman', 18)}}的其他基金

Forcing, inner models, and large cardinals.
强迫、内部模型和大基数。
  • 批准号:
    2246905
  • 财政年份:
    2023
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Conference: Logic Meeting at UCLA
会议:加州大学洛杉矶分校的 Logic 会议
  • 批准号:
    2302308
  • 财政年份:
    2023
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Logic Meeting at UCLA
加州大学洛杉矶分校的逻辑会议
  • 批准号:
    1901676
  • 财政年份:
    2019
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Forcing and Large Cardinals
强迫和大红衣主教
  • 批准号:
    1764029
  • 财政年份:
    2018
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Logic meeting at UCLA
加州大学洛杉矶分校的逻辑会议
  • 批准号:
    1700600
  • 财政年份:
    2017
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Combinatorial Set Theory, Model Theory of Abstract Elementary Classes, and Borel Combinatorics
组合集合论、抽象初等类模型论和 Borel 组合学
  • 批准号:
    1700425
  • 财政年份:
    2017
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Logic Meeting at UCLA
加州大学洛杉矶分校的逻辑会议
  • 批准号:
    1463601
  • 财政年份:
    2015
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Forcing and large cardinals
强迫和大基数
  • 批准号:
    1363364
  • 财政年份:
    2014
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Logic Meeting at UCLA
加州大学洛杉矶分校的逻辑会议
  • 批准号:
    1305671
  • 财政年份:
    2013
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Large cardinals and the continuum
大基数和连续体
  • 批准号:
    1101204
  • 财政年份:
    2011
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Forcing, inner models, and large cardinals.
强迫、内部模型和大基数。
  • 批准号:
    2246905
  • 财政年份:
    2023
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
  • 批准号:
    2308248
  • 财政年份:
    2023
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Forcing, Large Cardinals, and Infinitary Combinatorics
强迫、大基数和无限组合
  • 批准号:
    2054532
  • 财政年份:
    2021
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
  • 批准号:
    1954117
  • 财政年份:
    2020
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Forcing and Large Cardinals
强迫和大红衣主教
  • 批准号:
    1764029
  • 财政年份:
    2018
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
CAREER: Forcing and Large Cardinals
职业生涯:强迫和大红衣主教
  • 批准号:
    1454945
  • 财政年份:
    2015
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Forcing and large cardinals
强迫和大基数
  • 批准号:
    1363364
  • 财政年份:
    2014
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Continuing Grant
Combinatorics, Large Cardinals and Forcing
组合学、大基数和强迫
  • 批准号:
    9703945
  • 财政年份:
    1997
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Large Cardinals, Forcing,and Combinatorics
数学科学:大基数、强迫和组合问题
  • 批准号:
    9626713
  • 财政年份:
    1996
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Large Cardinals, Forcing and Combinatorics
数学科学:大基数、强迫和组合问题
  • 批准号:
    9303217
  • 财政年份:
    1993
  • 资助金额:
    $ 9.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了