Forcing, inner models, and large cardinals.
强迫、内部模型和大基数。
基本信息
- 批准号:2246905
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project seeks to contribute to our understanding of structural properties of the universe of mathematics. Our knowledge of mathematics comes through deduction from axioms. This knowledge is inherently incomplete, in the sense that there is a wide range of questions that can never be answered, either positively or negatively, from the standard axioms. Set theorists study these questions, to see how they relate to each other, and how they relate to a backbone of additional axioms, called large cardinal axioms, that assert strong reflection properties for very large sets. This project explores some of these questions through three interrelated aspects. The first involves a property of cardinal numbers that can be viewed as a remnant of a large cardinal axiom. This property has been studied since the 1970s, and work on it has been driving substantial developments in the area of consistency proofs. The second involves the interactions between combinatorial properties of the line of real numbers, and the size of the set of real numbers. In both these aspects, proofs that the relevant principles can hold use large cardinal axioms. The third aspect is to study the large cardinal axioms themselves, to develop specific models for these axioms, and to further strengthen the known connection between some of these axioms and properties of the line of real numbers. The overall purpose in all cases is to further our understanding of what is, and what is not, possible in the universe of mathematics. This project will support the development and training of graduate students in mathematical logic at UCLA. In addition this project builds on previous work of the PI at the undergraduate level. The PI plans to help talented UCLA undergraduates acquire graduate level knowledge in mathematical logic, and continue to graduate studies. This project deals with three interrelated areas in set theory: (i) the tree property; (ii) consistency proofs with large continuum; and (iii) large cardinals and inner models, in the region of Woodin cardinals and of supercompact cardinals. In connection with (i), the project is particularly concerned with forcing the tree property at regular cardinals, above the first uncountable cardinal, in increasingly large intervals. The ultimate goal is to see whether the tree property on some of these cardinals can prevent the property from holding on other cardinals, or whether it is consistent that the tree property holds at all these cardinals. We are very far from an answer to this question, but there has been some impressive progress in recent years and this project seeks to build on this progress in order to push the boundaries further. In connection with (ii), the project is particularly concerned with some of the central structural consequences of the proper forcing axiom (PFA), for example Todorcevic's open coloring axiom and p-ideal dichotomy. This project seeks to determine whether these principles are consistent with large continuum, meaning larger than its size under PFA. The ultimate goal is to develop a robust framework of consistency results with large continuum, or determine actual mathematical obstacles for such frameworks. In connection with (iii), the project is particularly concerned with descriptive set theoretic applications of inner models theory at the level of Woodin cardinals, and with pushing the theory of inner models to the level of supercompact cardinals. The former should lead to solutions for some of the more intractable, still open, questions in descriptive set theory under determinacy. The latter should help with our understanding of a key level of the large cardinal hierarchy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目旨在帮助我们理解数学宇宙的结构特性。我们的数学知识来自于公理的演绎。这种知识本质上是不完整的,因为有很多问题永远无法从标准公理中得到答案,无论是肯定的还是否定的。集合理论家研究这些问题,看看它们是如何相互联系的,以及它们是如何与附加公理的主干联系起来的,这些公理被称为大基数公理,它们断言非常大的集合具有强反射特性。本项目通过三个相互关联的方面来探讨其中的一些问题。第一个问题涉及基数的一个性质,这个性质可以看作是一个大基数公理的残余。自20世纪70年代以来,人们一直在研究这一性质,对它的研究推动了一致性证明领域的实质性发展。第二个涉及到实数线的组合性质和实数集的大小之间的相互作用。在这两个方面,证明相关原理可以成立使用大的基本公理。第三个方面是研究大基本公理本身,为这些公理建立具体的模型,并进一步加强一些公理与实数线性质之间已知的联系。在所有情况下,总的目的都是进一步了解数学世界中什么是可能的,什么是不可能的。该项目将支持加州大学洛杉矶分校数理逻辑研究生的发展和培训。此外,本项目建立在PI以前在本科阶段的工作基础上。PI计划帮助加州大学洛杉矶分校有才华的本科生获得数学逻辑方面的研究生水平知识,并继续研究生学习。本项目涉及集合论中三个相互关联的领域:(i)树的性质;(ii)大连续体的一致性证明;(iii)大型枢机和内部模型,在伍丁枢机和超紧凑枢机区域。与(i)相关,该项目特别关注在越来越大的间隔中,在第一个不可数基数之上的常规基数上强制树属性。最终的目标是查看这些基数上的tree属性是否可以阻止该属性在其他基数上保持不变,或者tree属性是否一致地在所有这些基数上保持不变。我们离这个问题的答案还有很长的路要走,但近年来已经取得了一些令人印象深刻的进展,这个项目试图在这一进展的基础上进一步突破界限。在(ii)中,该项目特别关注适当强迫公理(PFA)的一些中心结构结果,例如Todorcevic的开放着色公理和p-理想二分法。该项目旨在确定这些原则是否与大连续体一致,即比PFA下的尺寸更大。最终目标是开发具有大连续体的一致性结果的健壮框架,或者确定此类框架的实际数学障碍。与(iii)相关的是,该项目特别关注在Woodin基数水平上的内模型理论的描述性集合理论应用,并将内模型理论推向超紧基数水平。前者应该导致解决一些更棘手的,仍然开放的问题,在确定性下的描述性集合理论。后者应该有助于我们理解大基数层次的一个关键层次。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Itay Neeman其他文献
Two applications of finite side conditions at ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2$$\end{docume
有限边条件在 ω2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek 的两个应用} setlength{oddsidemargin}{-69pt} egin{文档}$$omega _2$$end{文档
- DOI:
10.1007/s00153-017-0550-y - 发表时间:
2017 - 期刊:
- 影响因子:0.3
- 作者:
Itay Neeman - 通讯作者:
Itay Neeman
Unraveling Π 1 1 sets, revisited
- DOI:
10.1007/bf02771982 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Itay Neeman - 通讯作者:
Itay Neeman
The domestic levels ofK c are iterable
- DOI:
10.1007/bf02773379 - 发表时间:
2001-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Alessandro Andretta;Itay Neeman;John Steel - 通讯作者:
John Steel
Itay Neeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Itay Neeman', 18)}}的其他基金
Conference: Logic Meeting at UCLA
会议:加州大学洛杉矶分校的 Logic 会议
- 批准号:
2302308 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Combinatorial Set Theory, Model Theory of Abstract Elementary Classes, and Borel Combinatorics
组合集合论、抽象初等类模型论和 Borel 组合学
- 批准号:
1700425 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
优化基因组策略搜寻中国藏族内耳畸形的致病基因及其致聋机制研究
- 批准号:31071099
- 批准年份:2010
- 资助金额:40.0 万元
- 项目类别:面上项目
内毛细胞损伤动物模型的建立及其听觉电生理学研究
- 批准号:30872858
- 批准年份:2008
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
Uncovering the Functional Effects of Neurotrophins in the Auditory Brainstem
揭示神经营养素对听觉脑干的功能影响
- 批准号:
10823506 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Mitochondrial Calcium Uniporter in Signaling and Dynamics
线粒体钙单向转运蛋白在信号传导和动力学中的作用
- 批准号:
10720242 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Genetic analysis of the Robo3+ glycinergic amacrine cell
Robo3 甘氨酸无长突细胞的遗传分析
- 批准号:
10749795 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Evaluating the efficacy of Butyric acid pro-drug nanoparticle in retinal neuroprotection
评估丁酸前药纳米颗粒在视网膜神经保护中的功效
- 批准号:
10602346 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Integrating genetic and ecological momentary assessment technologies to advance models of PTSD-AUD comorbidity
整合遗传和生态瞬时评估技术来推进 PTSD-AUD 共病模型
- 批准号:
10735391 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Novel mitochondria-to-lysosome crosstalk contributes to lysosomal dysfunction during aging
新型线粒体与溶酶体串扰导致衰老过程中溶酶体功能障碍
- 批准号:
10723050 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Mechanisms of X chromosome inactivation during human trophoblast differentiation in vitro
人滋养层体外分化过程中X染色体失活的机制
- 批准号:
10727675 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
High efficiency particulate air cleaner intervention to reduce respiratory virus exposure in elementary schools
高效颗粒空气净化器干预减少小学呼吸道病毒暴露
- 批准号:
10722583 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:














{{item.name}}会员




