SaTC: CORE: Medium: Collaborative: Understanding and Discovering Illicit Online Business Through Automatic Analysis of Online Text Traces

SaTC:核心:媒介:协作:通过自动分析在线文本痕迹理解和发现非法在线业务

基本信息

项目摘要

Unlawful online business often leaves behind human-readable text traces for interacting with its targets (e.g., defrauding victims, advertising illicit products to intended customers) or coordinating among the criminals involved. Such text content is valuable for detecting various types of cybercrimes and understanding how they happen, the perpetrator's strategies, capabilities and infrastructures and even the ecosystem of the underground business. Automatic discovery and analysis of such text traces, however, are challenging, due to their deceptive content that can easily blend into legitimate communication, and the criminal's extensive use of secret languages to hide their communication, even on public platforms (such as social media and forums). The project aims at systematically studying how to automatically discover such text traces and intelligently utilize them to fight against online crime. The research outcomes will contribute to more effective and timely control of online criminal activities, and the team's collaboration with industry also enables the team to get feedback and facilitate the transformation of new techniques to practical use. This project focuses on both criminals' communication with their targets and the underground communications among miscreants. To discover and understand illicit online activities, the research looks for any semantic inconsistency between text content and its context (such as advertisements for selling illegal drugs on an .edu domain) and for inappropriate operations being triggered (such as a malware download). Inconsistencies are captured by the Natural Language Processing (NLP) techniques customized to various security settings. Further, based upon crime-related content discovered, the project will study various machine learning techniques that support automatic extraction and analysis of threat intelligence and criminal activities. The techniques are evaluated using data collected from various sources (public datasets, underground forums and others), and the findings they make are validated through a process that involves manual labeling, communication with affected parties, and collaborations with industry partners. This work will help create in-depth knowledge about underground ecosystems and lead to more effective control of illicit operations of these online businesses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非法在线业务经常留下人类可读的文本痕迹,用于与其目标进行交互(例如,欺诈受害者、向目标客户宣传非法产品)或在所涉犯罪分子之间进行协调。这些文本内容对于检测各种类型的网络犯罪并了解其发生方式、犯罪者的策略、能力和基础设施,甚至地下业务的生态系统都很有价值。 然而,自动发现和分析这些文本痕迹是具有挑战性的,因为它们的欺骗性内容可以很容易地融入合法通信,并且犯罪分子广泛使用秘密语言来隐藏他们的通信,即使在公共平台上(如社交媒体和论坛)。该项目旨在系统地研究如何自动发现这些文本痕迹,并智能地利用它们来打击在线犯罪。研究成果将有助于更有效和及时地控制在线犯罪活动,该团队与行业的合作也使该团队能够获得反馈,并促进新技术的实际应用。 该项目的重点是罪犯与其目标的通信和歹徒之间的地下通信。为了发现和理解非法在线活动,该研究寻找文本内容及其上下文之间的任何语义不一致(例如在.edu域名上销售非法药物的广告)以及触发的不适当操作(例如恶意软件下载)。入侵是通过针对各种安全设置定制的自然语言处理(NLP)技术捕获的。此外,根据发现的犯罪相关内容,该项目将研究各种机器学习技术,以支持自动提取和分析威胁情报和犯罪活动。这些技术使用从各种来源(公共数据集,地下论坛等)收集的数据进行评估,并通过手动标记,与受影响方沟通以及与行业合作伙伴合作的过程验证他们的发现。这项工作将有助于深入了解地下生态系统,并导致更有效地控制这些在线业务的非法操作。该奖项反映了NSF的法定使命,并已被认为是值得支持的,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leveraging Book Indexes for Automatic Extraction of Concepts in MOOCs
A Study of Methods for the Generation of Domain-Aware Word Embeddings
Towards Dark Jargon Interpretation in Underground Forums
  • DOI:
    10.1007/978-3-030-72240-1_40
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dominic Seyler;Wei Liu;Xiaofeng Wang;Chengxiang Zhai
  • 通讯作者:
    Dominic Seyler;Wei Liu;Xiaofeng Wang;Chengxiang Zhai
Retrieving Webpages Using Online Discussions
Fine Grained Categorization of Drug Usage Tweets
药物使用推文的细粒度分类
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ChengXiang Zhai其他文献

Modeling the Influence of Popular Trending Events on User Search Behavior
模拟流行趋势事件对用户搜索行为的影响
InCaToMi: integrative causal topic miner between textual and non-textual time series data
InCaToMi:文本和非文本时间序列数据之间的综合因果主题挖掘器
Risk minimization and language modeling in text retrieval dissertation abstract
  • DOI:
    10.1145/792550.792571
  • 发表时间:
    2002-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ChengXiang Zhai
  • 通讯作者:
    ChengXiang Zhai
CLaDS: a cloud-based virtual lab for the delivery of scalable hands-on assignments for practical data science education
CLaDS:基于云的虚拟实验室,用于为实际数据科学教育提供可扩展的实践作业
Scaling Up Data Science Course Projects: A Case Study
扩大数据科学课程项目:案例研究

ChengXiang Zhai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ChengXiang Zhai', 18)}}的其他基金

CDI-Type II: Collaborative Research: Joint Image-Text Parsing and Reasoning for Analyzing Social and Political News Events
CDI-Type II:协作研究:用于分析社会和政治新闻事件的联合图文解析和推理
  • 批准号:
    1027965
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RI: Multi-Faceted Comparative Text Summarization
RI:多方面比较文本摘要
  • 批准号:
    0713571
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III-COR: QueryClinic: Improve Search Accuracy for Difficult Queries
III-COR:QueryClinic:提高困难查询的搜索准确性
  • 批准号:
    0713581
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Rapid Digital Specimen Image and Data Capture: A Web Services Solution
协作研究:快速数字样本图像和数据捕获:Web 服务解决方案
  • 批准号:
    0345387
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: User-centered Adaptive Information Retrieval
职业:以用户为中心的自适应信息检索
  • 批准号:
    0347933
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Increasing user autonomy and advertiser and platform responsibility in online advertising
SaTC:核心:中:增加在线广告中的用户自主权以及广告商和平台责任
  • 批准号:
    2318290
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
  • 批准号:
    2334148
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Collaborative: Hardening Off-the-Shelf Software Against Side Channel Attacks
SaTC:核心:媒介:协作:强化现成软件以抵御侧通道攻击
  • 批准号:
    2425665
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
  • 批准号:
    2237329
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Interactions between Driver and Vehicle Using Batteries
合作研究:SaTC:核心:中:使用电池确保驾驶员和车辆之间的交互安全
  • 批准号:
    2245224
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Understanding and Combatting Impersonation Attacks and Data Leakage in Online Advertising
协作研究:SaTC:核心:媒介:理解和打击在线广告中的冒充攻击和数据泄露
  • 批准号:
    2247516
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了