Cluster Algebras in Representation Theory and Symplectic Geometry

表示论和辛几何中的簇代数

基本信息

  • 批准号:
    1801969
  • 负责人:
  • 金额:
    $ 10.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

Representation theory is the study and classification of different kinds of symmetry, specifically in the context of linear algebra. Historically it has played an important role in mathematics because analyzing a given mathematical object, for example a system of equations, is often dramatically simplified when the object is symmetric in a suitable abstract sense. Symplectic geometry, on the other hand, grew out of Hamiltonian mechanics and today occupies a prominent place in mathematics due to the wide range of contexts, for example in topology and algebraic geometry, where the underlying geometric structures of Hamiltonian mechanics appear. This research project aims to advance understanding of both subjects, as well as unearthing deep new connections between them, by leveraging new ideas from algebraic combinatorics, in particular the recently developed theory of cluster algebras. These connections are in turn all informed by recent advances in mathematical physics, specifically string theory and supersymmetric gauge theory.On the side of representation theory, the main objects of study in this project include the affine Grassmannian and its relatives, in particular their derived categories of equivariant coherent sheaves. On the side of symplectic geometry, the main objects are categories of Lagrangian branes or microlocal sheaves in noncompact symplectic 4- and 6-manifolds. In the former context, cluster structures appear at the level of the equivariant K-rings of the geometric objects involved, and describe certain combinatorial structures inherited by these rings. In the latter, cluster structures appear on moduli spaces of Lagrangian branes in 4 dimensions, or through Hall algebra-type constructions based on Fukaya categories in 6 dimensions. Through its combinatorial nature the language of cluster algebras provides a means of isolating tractable aspects of otherwise very rich and complicated mathematical objects, as well as uncovering new relations between these objects.
表示论是对不同类型的对称性的研究和分类,特别是在线性代数的背景下。从历史上看,它在数学中发挥了重要作用,因为分析一个给定的数学对象,例如方程组,当对象在适当的抽象意义上是对称的时,通常会显着简化。辛几何,另一方面,成长出来的哈密顿力学和今天占据了突出的地方,在数学由于广泛的背景下,例如在拓扑和代数几何,其中底层几何结构的哈密顿力学出现。该研究项目旨在通过利用代数组合学的新思想,特别是最近开发的簇代数理论,促进对这两个主题的理解,并挖掘它们之间的深层新联系。这些联系反过来又都是由数学物理学的最新进展,特别是弦理论和超对称规范理论所提供的信息。在表示论方面,本项目的主要研究对象包括仿射格拉斯曼及其相关范畴,特别是它们的衍生范畴等变相干层。在辛几何方面,主要对象是非紧辛4-流形和6-流形中的拉格朗日膜或微局部层范畴。在前一种情况下,簇结构出现在所涉及的几何对象的等变K-环的水平上,并且描述了由这些环继承的某些组合结构。在后者中,簇结构出现在4维拉格朗日膜的模空间上,或者通过基于6维福谷范畴的Hall代数型构造。通过其组合性质的语言集群代数提供了一种手段,隔离,否则非常丰富和复杂的数学对象,以及发现这些对象之间的新关系的易处理的方面。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Affine cluster monomials are generalized minors
仿射簇单项式是广义次式
  • DOI:
    10.1112/s0010437x19007292
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Rupel, Dylan;Stella, Salvatore;Williams, Harold
  • 通讯作者:
    Williams, Harold
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harold Williams其他文献

Harold Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harold Williams', 18)}}的其他基金

CAREER: Cluster Algebras in Representation Theory, Geometry, and Physics
职业:表示论、几何和物理学中的簇代数
  • 批准号:
    2143922
  • 财政年份:
    2022
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Continuing Grant
Cluster Algebras in Representation Theory and Symplectic Geometry
表示论和辛几何中的簇代数
  • 批准号:
    2043079
  • 财政年份:
    2020
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Standard Grant
Cluster Algebras in Representation Theory and Symplectic Geometry
表示论和辛几何中的簇代数
  • 批准号:
    1702489
  • 财政年份:
    2017
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Standard Grant
Texas Algebraic Geometry Symposium
德克萨斯代数几何研讨会
  • 批准号:
    1601967
  • 财政年份:
    2016
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1502845
  • 财政年份:
    2015
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Cluster Algebras in Representation Theory, Geometry, and Physics
职业:表示论、几何和物理学中的簇代数
  • 批准号:
    2143922
  • 财政年份:
    2022
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Continuing Grant
Cluster algebras through representation theory
通过表示论的簇代数
  • 批准号:
    RGPIN-2018-04513
  • 财政年份:
    2022
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
  • 批准号:
    RGPIN-2018-06107
  • 财政年份:
    2022
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Discovery Grants Program - Individual
Cluster algebras through representation theory
通过表示论的簇代数
  • 批准号:
    RGPIN-2018-04513
  • 财政年份:
    2021
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
  • 批准号:
    RGPIN-2018-06107
  • 财政年份:
    2021
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Discovery Grants Program - Individual
Cluster Algebras in Representation Theory and Symplectic Geometry
表示论和辛几何中的簇代数
  • 批准号:
    2043079
  • 财政年份:
    2020
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Standard Grant
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
  • 批准号:
    RGPIN-2018-06107
  • 财政年份:
    2020
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Discovery Grants Program - Individual
Cluster algebras through representation theory
通过表示论的簇代数
  • 批准号:
    RGPIN-2018-04513
  • 财政年份:
    2020
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
  • 批准号:
    RGPIN-2018-06107
  • 财政年份:
    2019
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Discovery Grants Program - Individual
Application of cluster algebras to punctured Riemann surfaces and combinatorial representation theory
簇代数在刺穿黎曼曲面和组合表示理论中的应用
  • 批准号:
    19K03440
  • 财政年份:
    2019
  • 资助金额:
    $ 10.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了