Moduli and Surfaces in Complex Geometry
复杂几何中的模量和曲面
基本信息
- 批准号:1802477
- 负责人:
- 金额:$ 21.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To understand properties of an object in mathematics or physics, sometimes it is more enlightening to put all objects of similar nature together and study properties on the resulted collection as a whole. This is termed as moduli in algebraic and complex geometry. The concept is used in quantum physics and string theory as well. The first part of the project is to understand properties of moduli of some naturally existing geometric objects. On the other hand, sometimes a geometric object with special properties such as existence of extra symmetries or special type of singularities provide good models for understanding of various subjects in science. The second part of the project is aimed at finding special complex surfaces or higher dimensional geometric objects that would capture some properties that mathematicians have been seeking after. Since a wide range of tools are to be used, including computer implementation, a significant portion of the proposed activities can be used to train students or collaborate with young scholars.In more concrete terms, the principal investigator proposed to conduct research in several problems related to complex and algebraic geometry. The first part of the proposal details possible applications and extensions of some analytic tool developed recently by Wing-Keung To and the investigator. The new tools allow them to approach problems related to moduli space of higher dimensional polarized complex manifolds in a new and efficient way. The project aims at exploring and understanding moduli of general polarized manifolds in comparison with analytic, geometric and arithmetic properties of moduli space of curves. The second part of the project aims at applying the classification of fake projective planes by Gopal Prasad and the principal investigator as building blocks to investigate various algebraic geometric or complex geometric open problems. It includes construction of some unknown examples with small canonical degree, construction of exotic symplectic manifolds of small invariants, more geometrical realization of fake projective planes and classification of arithmetic fake compact Hermitian symmetric spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在数学或物理中,为了理解一个物体的性质,有时把所有性质相似的物体放在一起,然后把结果集合作为一个整体来研究性质,会更有启发性。这在代数几何和复几何中称为模。这个概念也用于量子物理和弦理论。项目的第一部分是了解一些自然存在的几何物体的模的性质。另一方面,有时具有特殊性质的几何物体,如存在额外的对称性或特殊类型的奇点,为理解科学中的各种主题提供了很好的模型。该项目的第二部分旨在寻找特殊的复杂表面或高维几何物体,这些物体将捕捉数学家一直在寻找的一些特性。由于将使用各种各样的工具,包括计算机实施,因此拟议活动的很大一部分可用于培训学生或与年轻学者合作。更具体地说,首席研究员提议对与复杂几何和代数几何有关的几个问题进行研究。提案的第一部分详细介绍了杜永强和研究者最近开发的一些分析工具的可能应用和扩展。这些新工具使他们能够以一种新的、有效的方法来处理高维极化复流形的模空间问题。本课题旨在通过对比曲线模空间的解析、几何和算术性质,探索和理解一般极化流形的模。该项目的第二部分旨在应用Gopal Prasad和首席研究员的假投影平面分类作为构建块来研究各种代数几何或复杂几何开放问题。包括一些小正则度的未知实例的构造,小不变量的奇异辛流形的构造,伪射影平面的更多几何实现和算术伪紧厄米对称空间的分类。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Limit of Weierstrass measure on stable curves
稳定曲线上 Weierstrass 测度的极限
- DOI:10.4310/jdg/1668186789
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Ng, Ngai-Fung;Yeung, Sai-Kee
- 通讯作者:Yeung, Sai-Kee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sai Kee Yeung其他文献
Integrality of characteristic numbers on complete Kähler manifolds
- DOI:
10.1007/bf01446585 - 发表时间:
1991-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Sai Kee Yeung - 通讯作者:
Sai Kee Yeung
Sai Kee Yeung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sai Kee Yeung', 18)}}的其他基金
Hyperbolic Properties of Families of Polarized Manifolds and Problems Related to Fake Compact Hermitian Symmetric Spaces
极化流形族的双曲性质及伪紧厄米对称空间相关问题
- 批准号:
1501282 - 财政年份:2015
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Special Complex Surfaces, Moduli Spaces, and Some Analytic Approach
特殊复杂曲面、模空间和一些分析方法
- 批准号:
1101149 - 财政年份:2011
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Fake hermitian symmetric manifolds and analytic approach to some problems in algebraic geometry
假埃尔米特对称流形及代数几何中若干问题的解析方法
- 批准号:
0758078 - 财政年份:2008
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Locally Hermitian symmetric spaces, non-positive curvature and complex hyperbolicity
局部埃尔米特对称空间、非正曲率和复双曲性
- 批准号:
0104089 - 财政年份:2001
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Complex Hyperbolicity, Value Distribution and Non-Positive Curvature
复双曲性、值分布和非正曲率
- 批准号:
9802720 - 财政年份:1998
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Complex Hyperbolicity and Manifolds of Negative Curvature
数学科学:复双曲性和负曲率流形
- 批准号:
9505067 - 财政年份:1995
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Superrigidity and Compactification of Kahler Manifolds
数学科学:卡勒流形的几何超刚性和紧致化
- 批准号:
9204314 - 财政年份:1992
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
相似海外基金
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
- 批准号:
2401104 - 财政年份:2024
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Multi-component drop impact on complex soft surfaces for developing 4D inkjet printing technology
多组分液滴对复杂软表面的影响,用于开发 4D 喷墨打印技术
- 批准号:
23K13255 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rational Dynamics on Complex Surfaces
复杂曲面上的有理动力学
- 批准号:
2246893 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Uniformization and Rigidity in Metric Surfaces and in the Complex Plane
公制曲面和复平面中的均匀化和刚度
- 批准号:
2246485 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Functional Tissue Fabrication on Surfaces with Complex Stiffness Gradient developed by 3D Printing
3D 打印开发的具有复杂刚度梯度表面的功能性组织制造
- 批准号:
22KF0247 - 财政年份:2023
- 资助金额:
$ 21.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Droplet and Spray Deposition on Complex Surfaces
复杂表面上的液滴和喷雾沉积
- 批准号:
RGPIN-2020-04040 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Decoding the dynamics of complex fluids near surfaces and interfaces
职业:解码表面和界面附近复杂流体的动力学
- 批准号:
2144020 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Continuing Grant
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
- 批准号:
2201221 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Standard Grant
Numerical and Experimental Studies of Steady and Unsteady Natural and Mixed Convective Heat Transfer from Horizontal and Inclined Surfaces of Complex Shape
复杂形状水平和倾斜表面稳态和非稳态自然和混合对流换热的数值和实验研究
- 批准号:
RGPIN-2021-02641 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
Discovery Grants Program - Individual
SustainabLY aNd digiTally driven hiEarchial laser texturing for Complex Surfaces
可持续且数字化驱动的复杂表面分层激光纹理
- 批准号:
10066087 - 财政年份:2022
- 资助金额:
$ 21.5万 - 项目类别:
EU-Funded














{{item.name}}会员




