Hyperbolic Properties of Families of Polarized Manifolds and Problems Related to Fake Compact Hermitian Symmetric Spaces

极化流形族的双曲性质及伪紧厄米对称空间相关问题

基本信息

  • 批准号:
    1501282
  • 负责人:
  • 金额:
    $ 17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

To understand the mathematical properties of a geometric object, often one needs to group families of objects of similar nature together and study a family as a whole. This concept arises naturally in quantum physics and string theory as well. A large part of this research project is devoted to the understanding the geometric properties of the parameter space inherited indirectly from the objects that it parameterizes. The Principal Investigator plans to investigate universal properties of such families in terms of various notions of negativity in curvature. Some of the problems to be studied are longstanding ones in algebraic and complex geometry. Another line of research is on the classification of some special geometric objects known as fake compact Hermitian symmetric spaces. These objects provide interesting geometric models for studying a wide range of problems from different areas of mathematics, including algebraic geometry, differential geometry, number theory, and representation theory. More specifically, the Principal Investigator will pursue research in several directions in algebraic and complex geometry. In the first part of the project, he intends to apply recently-developed tools involving generalized Weil-Petersson metrics to understand various hyperbolicity properties of specific families of polarized manifolds, including the hyperbolicity for families of Kahler Ricci flat manifolds, families of special log-general type manifolds, and families of general-type manifolds. In particular, he will investigate a conjecture of Viehweg about log-general type properties of moduli spaces of canonically polarized manifolds. In the second part, he plans to complete a collaborative project on the classification of arithmetic fake compact Hermitian symmetric spaces, a natural continuation of earlier work on fake projective planes. In addition, he will study problems related to these fake structures, such as the investigation of exceptional collections on fake projective planes from the point of view of derived categories, the characterization of the universal covering of a complex exotic quadric or a fake quadric, and the understanding of geometric properties of Cartwright-Steger surfaces.
为了理解一个几何物体的数学性质,人们通常需要将性质相似的物体组合在一起,并将其作为一个整体进行研究。这个概念在量子物理学和弦理论中也很自然地出现。该研究项目的很大一部分致力于理解间接继承自其参数化对象的参数空间的几何性质。首席研究员计划根据曲率的各种负性概念来研究这些族的普遍性质。要研究的一些问题是代数和复杂几何中长期存在的问题。另一个研究方向是对一些特殊几何对象的分类,即假紧致厄米对称空间。这些对象为研究来自不同数学领域的广泛问题提供了有趣的几何模型,包括代数几何、微分几何、数论和表示理论。更具体地说,首席研究员将在代数和复杂几何的几个方向上进行研究。在项目的第一部分,他打算应用最近开发的工具,包括广义的Weil-Petersson度量来理解极化流形的特定族的各种双曲性,包括Kahler Ricci平面流形族的双曲性,特殊对数一般型流形族的双曲性,以及一般型流形族的双曲性。特别地,他将研究Viehweg关于正则极化流形模空间的对数一般型性质的一个猜想。在第二部分,他计划完成一个关于算法伪紧厄米对称空间的分类的合作项目,这是早期关于伪投影平面的工作的自然延续。此外,他将研究与这些假结构相关的问题,例如从衍生范畴的角度研究假投影平面上的特殊集合,复杂奇异二次曲面或假二次曲面的普遍覆盖的表征,以及对Cartwright-Steger曲面几何性质的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sai Kee Yeung其他文献

Integrality of characteristic numbers on complete Kähler manifolds
  • DOI:
    10.1007/bf01446585
  • 发表时间:
    1991-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Sai Kee Yeung
  • 通讯作者:
    Sai Kee Yeung

Sai Kee Yeung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sai Kee Yeung', 18)}}的其他基金

Moduli and Surfaces in Complex Geometry
复杂几何中的模量和曲面
  • 批准号:
    1802477
  • 财政年份:
    2018
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Special Complex Surfaces, Moduli Spaces, and Some Analytic Approach
特殊复杂曲面、模空间和一些分析方法
  • 批准号:
    1101149
  • 财政年份:
    2011
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Fake hermitian symmetric manifolds and analytic approach to some problems in algebraic geometry
假埃尔米特对称流形及代数几何中若干问题的解析方法
  • 批准号:
    0758078
  • 财政年份:
    2008
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Locally Hermitian symmetric spaces, non-positive curvature and complex hyperbolicity
局部埃尔米特对称空间、非正曲率和复双曲性
  • 批准号:
    0104089
  • 财政年份:
    2001
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Complex Hyperbolicity, Value Distribution and Non-Positive Curvature
复双曲性、值分布和非正曲率
  • 批准号:
    9802720
  • 财政年份:
    1998
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex Hyperbolicity and Manifolds of Negative Curvature
数学科学:复双曲性和负曲率流形
  • 批准号:
    9505067
  • 财政年份:
    1995
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Superrigidity and Compactification of Kahler Manifolds
数学科学:卡勒流形的几何超刚性和紧致化
  • 批准号:
    9204314
  • 财政年份:
    1992
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant

相似海外基金

A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
  • 批准号:
    DP240102053
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Projects
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Training Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Characterization of the distribution and properties of inert copper in seawater
海水中惰性铜的分布和性质表征
  • 批准号:
    2343416
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
  • 批准号:
    24K17868
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了