Complex Hyperbolicity, Value Distribution and Non-Positive Curvature

复双曲性、值分布和非正曲率

基本信息

  • 批准号:
    9802720
  • 负责人:
  • 金额:
    $ 8.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-07-01 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

The focus of this project is on the research of complex hyperbolicity and non-equidimensional value distribution theory, both of which study the behaviour of the image of an entire holomorphic map from the complex line to a complex manifold. It is generally conjectured that such entire holomorphic curves in a negatively curved manifold or a variety of general type are greatly constrained. In several recent joint papers with Yum-Tong Siu, the investigator has solved a conjecture of Lang about the value distribution of an entire holomorphic curve with respect to an ample divisor, and in dimension two essentially solved a conjecture of Kobayashi about hyperbolicity of the complement of a curve in the complex projective plane; research in this direction will be continued. A long term goal is to understand the relation of complex hyperbolicity to diophantine approximation theory. In the second part of the proposal, the author considers several aspects of manifolds with negative curvature. In the past the author has studied several aspects of uniformization of such manifolds with different conditions attached. He proposes to work on several directions related to his earlier research projects, including study of geometric and analytic aspects of such a manifold and their relations to its universal covering, fundamental group and Betti numbers. In geometry, people study models which on one hand should be elegant and relatively simple to discribe and on the other hand should display rich geometric structures. A well chosen negatively curved space happens to be a good candidate to study. The study of curved or non-flat spaces is very natural from a physics point of view because as a result of general relativity, people realize that the model of the universe itself is not flat. The area of the study of negatively curved geometric structures is very fertile in the sense that ideas from different branches of mathematics can be applied to produce beautiful results. Most of the projects pro posed in this proposal concern the clarification and classification of such spaces.
该项目的重点是复双曲性和非等维值分布理论的研究,这两个理论都研究了从复直线到复流形的整个全纯映射的像的行为。 一般认为,负曲流形或各种一般类型中的全纯曲线都受到极大的约束。 在最近的几个联合文件与Yum-Tong萧,调查解决了一个猜想郎的价值分布的整个全纯曲线就充分因子,并在第二次基本上解决了猜想小林的双曲补曲线在复射影平面;研究在这个方向将继续下去。 一个长期的目标是了解复双曲性与丢番图近似理论的关系。 在建议的第二部分,作者考虑了负曲率流形的几个方面。 作者在过去研究了这类流形在不同条件下的一致化的几个方面。 他建议工作的几个方向与他早期的研究项目,包括研究几何和分析方面的这样一个流形及其关系,其普遍覆盖,基本组和贝蒂数。 在几何学中,人们研究的模型一方面应该是优美的,相对简单的描述,另一方面应该显示丰富的几何结构。 一个精心选择的负弯曲空间恰好是一个很好的研究对象。 从物理学的角度来看,研究弯曲或非平坦的空间是非常自然的,因为作为广义相对论的结果,人们认识到宇宙本身的模型不是平坦的。 负弯曲几何结构的研究领域是非常肥沃的,因为不同数学分支的思想可以应用于产生美丽的结果。 本提案中提出的大多数项目涉及对这些空间的澄清和分类。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sai Kee Yeung其他文献

Integrality of characteristic numbers on complete Kähler manifolds
  • DOI:
    10.1007/bf01446585
  • 发表时间:
    1991-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Sai Kee Yeung
  • 通讯作者:
    Sai Kee Yeung

Sai Kee Yeung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sai Kee Yeung', 18)}}的其他基金

Moduli and Surfaces in Complex Geometry
复杂几何中的模量和曲面
  • 批准号:
    1802477
  • 财政年份:
    2018
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Continuing Grant
Hyperbolic Properties of Families of Polarized Manifolds and Problems Related to Fake Compact Hermitian Symmetric Spaces
极化流形族的双曲性质及伪紧厄米对称空间相关问题
  • 批准号:
    1501282
  • 财政年份:
    2015
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Special Complex Surfaces, Moduli Spaces, and Some Analytic Approach
特殊复杂曲面、模空间和一些分析方法
  • 批准号:
    1101149
  • 财政年份:
    2011
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Fake hermitian symmetric manifolds and analytic approach to some problems in algebraic geometry
假埃尔米特对称流形及代数几何中若干问题的解析方法
  • 批准号:
    0758078
  • 财政年份:
    2008
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Locally Hermitian symmetric spaces, non-positive curvature and complex hyperbolicity
局部埃尔米特对称空间、非正曲率和复双曲性
  • 批准号:
    0104089
  • 财政年份:
    2001
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Complex Hyperbolicity and Manifolds of Negative Curvature
数学科学:复双曲性和负曲率流形
  • 批准号:
    9505067
  • 财政年份:
    1995
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Superrigidity and Compactification of Kahler Manifolds
数学科学:卡勒流形的几何超刚性和紧致化
  • 批准号:
    9204314
  • 财政年份:
    1992
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant

相似海外基金

Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2896389
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Studentship
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2785744
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Studentship
Hyperbolicity of Finitely Generated Groups
有限生成群的双曲性
  • 批准号:
    2742050
  • 财政年份:
    2022
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Studentship
Algebraic Hyperbolicity and Lang Conjecture
代数双曲性和 Lang 猜想
  • 批准号:
    RGPIN-2019-04775
  • 财政年份:
    2022
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Discovery Grants Program - Individual
Hyperbolicity with Singularities and Coexistence via Smoothing
双曲性与奇点以及通过平滑的共存
  • 批准号:
    2154378
  • 财政年份:
    2022
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Algebraic Hyperbolicity and Lang Conjecture
代数双曲性和 Lang 猜想
  • 批准号:
    RGPIN-2019-04775
  • 财政年份:
    2021
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Gromov Hyperbolicity and Besov Spaces in Quasiconformal Analysis
格罗莫夫双曲性和贝索夫空间在拟共形分析中的作用
  • 批准号:
    2054960
  • 财政年份:
    2021
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Generalizations of hyperbolicity
双曲性的概括
  • 批准号:
    564135-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 8.39万
  • 项目类别:
    University Undergraduate Student Research Awards
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2021
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Discovery Grants Program - Individual
Beyond Hyperbolicity at the Ohio State University
俄亥俄州立大学的超越双曲性
  • 批准号:
    2000885
  • 财政年份:
    2020
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了