EAGER: Improving our Understanding of Supercell Storms through Data Science

EAGER:通过数据科学提高我们对超级细胞风暴的理解

基本信息

  • 批准号:
    1802627
  • 负责人:
  • 金额:
    $ 16.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-15 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

This study seeks to apply novel data science techniques (such as tree-based classification models and deep learning) to four-dimensional (4D) weather radar observations of thunderstorm dynamics to enable identification of storms capable of producing tornadoes up to an hour prior to tornadogenesis. Real-time severe storm prediction is a challenging task that currently requires a human forecaster with a thorough understanding of the dynamics and current state of the atmosphere. This study will develop and apply data science techniques to four-dimensional radar data from severe storms throughout the continental U.S. with the goal of identifying critical spatiotemporal relationships that can improve the understanding and prediction of tornadoes. The long-term goal will be to develop techniques to fundamentally improve our understanding of severe storms in general (including hail, wind, and tornadoes) by analyzing the new knowledge identified by the data science models.This study seeks to advance the scientific knowledge of tornadogenesis by identifying novel precursors to tornadoes in two unique 4D weather radar datasets. Data science has the potential to advance knowledge by processing and objectively evaluating a large amount of data in a relatively short period of time. This provides a mechanism by which large, complicated meteorological datasets can be assessed for their predictive capability or alternative applications without the need for time consuming subjective evaluation. The methods developed will enable others to evaluate existing Earth system data to a spatiotemporal extent that is not possible with established approaches. The application of data science techniques to a novel domain will require the development of new techniques focusing on spatiotemporal 4D weather radar data.
这项研究试图将新的数据科学技术(如基于树的分类模型和深度学习)应用于雷暴动力学的四维(4D)天气雷达观测,以识别能够在龙卷风发生前一小时内产生龙卷风的风暴。实时强风暴预报是一项具有挑战性的任务,目前需要一名对大气动态和当前状态有透彻了解的人类预报员。这项研究将开发数据科学技术并将其应用于美国大陆强风暴的四维雷达数据,目的是识别关键的时空关系,以提高对龙卷风的理解和预测。这项研究的长期目标是通过分析数据科学模型识别的新知识,从根本上提高我们对强风暴(包括冰雹、风和龙卷风)的理解。这项研究试图通过在两个独特的4D天气雷达数据集中识别龙卷风的新前兆来推进龙卷风发生的科学知识。通过在相对较短的时间内处理和客观地评估大量数据,数据科学具有推动知识进步的潜力。这提供了一种机制,可以用来评估大型、复杂的气象数据集的预测能力或替代应用,而不需要耗时的主观评估。所开发的方法将使其他人能够对现有的地球系统数据进行时空评估,这是现有方法所不可能做到的。将数据科学技术应用于一个新的领域将需要开发以时空4D天气雷达数据为重点的新技术。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy McGovern其他文献

Trust and trustworthy artificial intelligence: A research agenda for AI in the environmental sciences
信任和值得信赖的人工智能:环境科学领域人工智能的研究议程
  • DOI:
    10.1111/risa.14245
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ann Bostrom;J. Demuth;Christopher D. Wirz;Mariana G Cains;Andrea Schumacher;Deianna Madlambayan;A. S. Bansal;A. Bearth;Randy J. Chase;Katherine M. Crosman;I. Ebert‐Uphoff;D. Gagne;Seth Guikema;Robert Hoffman;Branden B Johnson;Christina Kumler;John D. Lee;Anna Lowe;Amy McGovern;Vanessa Przybylo;Jacob T Radford;Emilie Roth;Carly Sutter;Philippe Tissot;Paul Roebber;Jebb Q. Stewart;Miranda C. White;John K. Williams
  • 通讯作者:
    John K. Williams
(Re)Conceptualizing trustworthy AI: A foundation for change
(重新)概念化值得信赖的人工智能:变革的基础
  • DOI:
    10.1016/j.artint.2025.104309
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Christopher D. Wirz;Julie L. Demuth;Ann Bostrom;Mariana G. Cains;Imme Ebert-Uphoff;David John Gagne;Andrea Schumacher;Amy McGovern;Deianna Madlambayan
  • 通讯作者:
    Deianna Madlambayan
Spatiotemporal Relational Probability Trees: An Introduction
时空关系概率树:简介
The value of convergence research for developing trustworthy AI for weather, climate, and ocean hazards
融合研究对于开发针对天气、气候和海洋灾害的可靠人工智能的价值
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amy McGovern;Julie L. Demuth;Ann Bostrom;Christopher D. Wirz;Philippe Tissot;Mariana G. Cains;Kate D. Musgrave
  • 通讯作者:
    Kate D. Musgrave
Identifying predictive multi-dimensional time series motifs: an application to severe weather prediction
  • DOI:
    10.1007/s10618-010-0193-7
  • 发表时间:
    2010-07-29
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Amy McGovern;Derek H. Rosendahl;Rodger A. Brown;Kelvin K. Droegemeier
  • 通讯作者:
    Kelvin K. Droegemeier

Amy McGovern的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy McGovern', 18)}}的其他基金

Collaborative Research: Conference: NSF Workshop Sustainable Computing for Sustainability
协作研究:会议:NSF 可持续计算可持续发展研讨会
  • 批准号:
    2334855
  • 财政年份:
    2023
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
AI Institute: Artificial Intelligence for Environmental Sciences (AI2ES)
人工智能研究所:环境科学人工智能(AI2ES)
  • 批准号:
    2019758
  • 财政年份:
    2020
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Cooperative Agreement
CAREER: Developing Dynamic Relational Models to Anticipate Tornado Formation
职业:开发动态关系模型来预测龙卷风的形成
  • 批准号:
    0746816
  • 财政年份:
    2008
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Continuing Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Improving our understanding of the atmospheric sulfur cycle and its impact on air pollution and climate
提高我们对大气硫循环及其对空气污染和气候影响的了解
  • 批准号:
    2885122
  • 财政年份:
    2023
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Studentship
Improving our understanding of breast cancer mortality disparities through recurrence: a multi-level approach among women in Georgia
通过复发提高我们对乳腺癌死亡率差异的理解:格鲁吉亚妇女的多层次方法
  • 批准号:
    10818726
  • 财政年份:
    2023
  • 资助金额:
    $ 16.85万
  • 项目类别:
Collaborative Research: Improving Our Understanding of Supercells from Convection Initiation to Tornadogenesis via Innovative Observations, Simulations, and Analysis Techniques
合作研究:通过创新的观测、模拟和分析技术提高我们对超级单体从对流引发到龙卷风发生的理解
  • 批准号:
    2150792
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Our Understanding of Supercells from Convection Initiation to Tornadogenesis via Innovative Observations, Simulations, and Analysis Techniques
合作研究:通过创新的观测、模拟和分析技术提高我们对超级单体从对流引发到龙卷风发生的理解
  • 批准号:
    2150793
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
D-ISN: Improving our Understanding of Illegal Opioid Supply Networks
D-ISN:提高我们对非法阿片类药物供应网络的了解
  • 批准号:
    2146230
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Improving our understanding and predictions of the impacts of groundwater extraction on small streams
提高我们对地下水开采对小溪流影响的理解和预测
  • 批准号:
    RGPIN-2016-04149
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Discovery Grants Program - Individual
Improving our understanding of breast cancer mortality disparities through recurrence: a multi-level approach among women in Georgia
通过复发提高我们对乳腺癌死亡率差异的理解:格鲁吉亚妇女的多层次方法
  • 批准号:
    10184367
  • 财政年份:
    2021
  • 资助金额:
    $ 16.85万
  • 项目类别:
Improving our understanding of breast cancer mortality disparities through recurrence: a multi-level approach among women in Georgia
通过复发提高我们对乳腺癌死亡率差异的理解:格鲁吉亚妇女的多层次方法
  • 批准号:
    10573305
  • 财政年份:
    2021
  • 资助金额:
    $ 16.85万
  • 项目类别:
A Scenario Planning Tool - Improving the Bikeability of Our Cities
情景规划工具 - 提高城市的自行车适宜性
  • 批准号:
    LP200201073
  • 财政年份:
    2021
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Linkage Projects
Improving our understanding of breast cancer mortality disparities through recurrence: a multi-level approach among women in Georgia
通过复发提高我们对乳腺癌死亡率差异的理解:格鲁吉亚妇女的多层次方法
  • 批准号:
    10364766
  • 财政年份:
    2021
  • 资助金额:
    $ 16.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了