CAREER: Developing Dynamic Relational Models to Anticipate Tornado Formation
职业:开发动态关系模型来预测龙卷风的形成
基本信息
- 批准号:0746816
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research is to revolutionize the ability to anticipate tornadoes by developing advanced techniques for statistical pattern discovery in spatially and temporally varying relational data. These models are applied to complete fields of meteorological quantities obtained through data assimilation and simulation. Doppler radar data is limited and, while modern data assimilation techniques allow the unobserved quantities to be estimated, the resulting four- dimensional fields are too complicated for the extraction of meaningful, repeatable patterns by either humans or current data mining techniques. By studying a full field of variables, the models can identify critical interactions among high level features. The models are developed and verified in close collaboration with domain experts.The interdisciplinary research is used to improve retention and recruitment in computer science (CS). This draws on recent evidence that underrepresented groups are not drawn to computing careers because they do not appreciate how computing can be used to solve real world problems. Introducing authentic projects into both early CS and meteorology classes will improve the number of technically trained students in both majors.The primary broader impact of this research is to society, through the potential for reduction in loss of human life, property, and money. Models will be made available to operational meteorologists as they are verified. Another broader impact will come from increasing the number of computing oriented minors and majors through authentic projects. All data and results will be disseminated through peer reviewed publications and via open source online repositories accessible on the project Web site (http://www.cs.ou.edu/~amy/career/).
这项研究的目标是通过开发先进的技术,在空间和时间变化的关系数据的统计模式发现,革命性的预测龙卷风的能力。 这些模式被应用于通过资料同化和模拟获得的气象量的完整场。 多普勒雷达数据是有限的,虽然现代数据同化技术允许估计未观测到的量,但由此产生的四维场太复杂,无法通过人类或当前的数据挖掘技术提取有意义的、可重复的模式。 通过研究整个变量域,模型可以识别高级特征之间的关键相互作用。 这些模型是在与领域专家的密切合作下开发和验证的。跨学科的研究用于提高计算机科学(CS)的保留和招聘。 这是基于最近的证据,即代表性不足的群体不被计算机职业所吸引,因为他们不理解如何使用计算机来解决真实的世界问题。 将真实的项目引入早期的CS和气象学课程将提高这两个专业受过技术培训的学生的数量。这项研究的主要影响是社会,通过减少人类生命,财产和金钱损失的潜力。 模型经核实后将提供给业务气象学家。 另一个更广泛的影响将来自通过真实项目增加面向计算的未成年人和专业人员的数量。 所有数据和结果都将通过同行审查的出版物和可在项目网站(http://www.cs.ou.edu/career/)上查阅的开放源码在线资料库传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy McGovern其他文献
Trust and trustworthy artificial intelligence: A research agenda for AI in the environmental sciences
信任和值得信赖的人工智能:环境科学领域人工智能的研究议程
- DOI:
10.1111/risa.14245 - 发表时间:
2023 - 期刊:
- 影响因子:3.8
- 作者:
Ann Bostrom;J. Demuth;Christopher D. Wirz;Mariana G Cains;Andrea Schumacher;Deianna Madlambayan;A. S. Bansal;A. Bearth;Randy J. Chase;Katherine M. Crosman;I. Ebert‐Uphoff;D. Gagne;Seth Guikema;Robert Hoffman;Branden B Johnson;Christina Kumler;John D. Lee;Anna Lowe;Amy McGovern;Vanessa Przybylo;Jacob T Radford;Emilie Roth;Carly Sutter;Philippe Tissot;Paul Roebber;Jebb Q. Stewart;Miranda C. White;John K. Williams - 通讯作者:
John K. Williams
(Re)Conceptualizing trustworthy AI: A foundation for change
(重新)概念化值得信赖的人工智能:变革的基础
- DOI:
10.1016/j.artint.2025.104309 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:4.600
- 作者:
Christopher D. Wirz;Julie L. Demuth;Ann Bostrom;Mariana G. Cains;Imme Ebert-Uphoff;David John Gagne;Andrea Schumacher;Amy McGovern;Deianna Madlambayan - 通讯作者:
Deianna Madlambayan
Spatiotemporal Relational Probability Trees: An Introduction
时空关系概率树:简介
- DOI:
10.1109/icdm.2008.134 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Amy McGovern;Nathan C. Hiers;Matthew W. Collier;David John Gagne;Rodger A. Brown - 通讯作者:
Rodger A. Brown
The value of convergence research for developing trustworthy AI for weather, climate, and ocean hazards
融合研究对于开发针对天气、气候和海洋灾害的可靠人工智能的价值
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Amy McGovern;Julie L. Demuth;Ann Bostrom;Christopher D. Wirz;Philippe Tissot;Mariana G. Cains;Kate D. Musgrave - 通讯作者:
Kate D. Musgrave
Identifying predictive multi-dimensional time series motifs: an application to severe weather prediction
- DOI:
10.1007/s10618-010-0193-7 - 发表时间:
2010-07-29 - 期刊:
- 影响因子:4.300
- 作者:
Amy McGovern;Derek H. Rosendahl;Rodger A. Brown;Kelvin K. Droegemeier - 通讯作者:
Kelvin K. Droegemeier
Amy McGovern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy McGovern', 18)}}的其他基金
Collaborative Research: Conference: NSF Workshop Sustainable Computing for Sustainability
协作研究:会议:NSF 可持续计算可持续发展研讨会
- 批准号:
2334855 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AI Institute: Artificial Intelligence for Environmental Sciences (AI2ES)
人工智能研究所:环境科学人工智能(AI2ES)
- 批准号:
2019758 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Cooperative Agreement
EAGER: Improving our Understanding of Supercell Storms through Data Science
EAGER:通过数据科学提高我们对超级细胞风暴的理解
- 批准号:
1802627 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
The dynamic interplay between the matrix and cell fate in developing heart
心脏发育过程中基质与细胞命运之间的动态相互作用
- 批准号:
DE230101315 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Discovery Early Career Researcher Award
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240981 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Developing Pareto front models for the improved description of plant's dynamic root system architecture
开发帕累托前沿模型以改进植物动态根系结构的描述
- 批准号:
2244735 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Developing an MND oral health care pathway and a dynamic toolkit
开发 MND 口腔保健途径和动态工具包
- 批准号:
ES/Y008200/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Developing a dynamic modeling framework for surveillance, prediction, and real-time resource allocation to reduce health disparities during Covid-19 and future pandemics
开发用于监测、预测和实时资源分配的动态建模框架,以减少 Covid-19 和未来大流行期间的健康差距
- 批准号:
10584876 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Developing methods for dynamic contact network parameterisation within individual-level models for infectious disease transmission.
开发传染病传播个体水平模型中动态接触网络参数化的方法。
- 批准号:
548001-2020 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Postgraduate Scholarships - Doctoral
Elucidation of magnetic cluster dynamics by developing a dynamic magnetic pair-density function analysis method
通过开发动态磁对密度函数分析方法来阐明磁团簇动力学
- 批准号:
22K04678 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing health monitoring and prediction techniques of soil behaviours based on dynamic wave signals
开发基于动态波信号的土壤行为健康监测和预测技术
- 批准号:
22K14322 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing Dynamic and Interactive Materials to Teach Computing Systems Concepts to All Students
开发动态和交互式材料来向所有学生教授计算系统概念
- 批准号:
2141814 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Interagency Agreement