CAREER: Random Matrices and Many-Body Systems

职业:随机矩阵和多体系统

基本信息

  • 批准号:
    1802861
  • 负责人:
  • 金额:
    $ 35.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The investigator's project is dedicated to a study of random matrix theory. It is a very active field, since many questions in other fields can be represented mathematically as matrix problems. For example: the spectra of heavy atoms in physics, statistical estimation of covariance matrices in statistics, capacity of quantum channels in quantum communication, conducting properties of semiconductors (Anderson models). This project aims to study the basic properties of some random matrix ensembles, which will shed some light on the nature of the highly correlated many-body system. In particular, for understanding the conducting properties of semiconductors and other disordered systems, as explained by the Anderson model in quantum physics, one main project in this research program is designed to provide rigorous proof that similar (conducting) property appears in the random matrix models. There are some problems in this program designed for training graduate and undergraduate students who have an interest in probability theory. The investigator will also run workshops designed to foster the upward professional development of graduate and undergraduate students working in fields related to random matrix theory as well as to stimulate interaction across barriers between these disciplines. The investigator will focus on the identification of the eigenvalue densities, the local eigenvalue statistics and the eigenvector distributions of many different classes of random matrix ensembles. The ensembles considered in this project include anisotropic matrices, band matrices, i.i.d. random matrices, and general non-Hermitian matrices. One main project will be focused on the localization-delocalization conjecture of random band matrices, which is very similar to the metal-insulator phase transition for disordered quantum systems (i.e., the so called Anderson conjecture in quantum physics). Different from regular Wigner matrices, random band matrices are not a mean-field type ensemble. Hence this ensemble is more like the realistic models of quantum many-body systems, which involve quantum states with more geometric structure. Another main project is a study of non-Hermitian matrices (e.g., i.i.d. random matrices). The study on this type of ensembles is much weaker than the study on random Hermitian matrices, since the regular spectrum method can not be applied. The investigator will apply some new ideas on these type of matrices. In this proposal, some projects are also designed for training graduate and undergraduate students, which include proving the universality phenomenon for more general random matrix ensembles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究者的项目致力于随机矩阵理论的研究。它是一个非常活跃的领域,因为其他领域的许多问题都可以在数学上表示为矩阵问题。举例来说:物理学中的重原子光谱,统计学中协方差矩阵的统计估计,量子通信中量子信道的容量,半导体的导电性质(安德森模型)。本项目旨在研究一些随机矩阵系综的基本性质,这将有助于揭示高关联多体系统的本质。特别是,为了理解半导体和其他无序系统的导电特性,如量子物理学中的安德森模型所解释的那样,本研究计划的一个主要项目旨在提供严格的证据,证明类似的(导电)特性出现在随机矩阵模型中。本专业是为培养对概率论感兴趣的研究生和本科生而设计的,但存在一些问题。调查员还将举办研讨会,旨在促进在随机矩阵理论相关领域工作的研究生和本科生的向上专业发展,并刺激这些学科之间的互动。 研究者将集中在许多不同类别的随机矩阵集合的特征值密度,局部特征值统计和特征向量分布的识别。在这个项目中考虑的系综包括各向异性矩阵,带矩阵,i.i.d.随机矩阵和一般非Hermitian矩阵。一个主要项目将集中在随机能带矩阵的局域化-离域化猜想上,这与无序量子系统的金属-绝缘体相变非常相似(即,量子物理学中所谓的安德森猜想)。与规则Wigner矩阵不同,随机带矩阵不是平均场型系综。因此,这个系综更像是量子多体系统的现实模型,它涉及具有更多几何结构的量子态。另一个主要项目是研究非埃尔米特矩阵(例如,i.i.d.随机矩阵)。由于正则谱方法不能应用,对这类系综的研究远比随机厄米特矩阵的研究薄弱。研究人员将在这些类型的矩阵上应用一些新的想法。在这个提议中,一些项目也是为培养研究生和本科生而设计的,其中包括证明更一般的随机矩阵集合的普适性现象。这个奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Yin其他文献

A modified NLDA algorithm
改进的NLDA算法
High Responsivity Photodetector based on Suspended Monolayer Graphene/RbAg4I5 Composite Nanostructure
基于悬浮单层石墨烯/RbAg4I5复合纳米结构的高响应度光电探测器
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Qianqian Hu;Pengfei Wang;Jun Yin;Yu Liu;Bocheng Lv;Jia-Lin Zhu;Zhanmin Dong;Wei Zhang;Wanyun Ma;Jialin Sun
  • 通讯作者:
    Jialin Sun
span style=font-family:; new= times= roman?,?serif?;font-size:12pt;?=Facile Preparation of Regioregular Poly(3-hexylthiophene) and Its Block Copolymers with π-Allylnickel Complex as External Initiato
以α-烯丙基镍配合物为外引发剂轻松制备区域规整聚(3-己基噻吩)及其嵌段共聚物
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Jun Yin;Yuan-Yuan Zhu;Yunsheng Ding;Zong-Quan Wu
  • 通讯作者:
    Zong-Quan Wu
span style=font-family:; roman?,?serif?;font-size:12pt;?= times= new=Poly(3-hexylthiophene)-block-Poly(5,8-di-p-tolylquinoxaline-2,3-diyl) Conjugated Rod-Rod Copolymers: One Pot Synthesis, Self-Assem
聚(3-己基噻吩)-嵌段-聚(5,8-二-对甲苯基喹喔啉-2,3-二基)共轭棒-棒共聚物:一锅合成、自组装
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yan-Wu Zhu;Yunsheng Ding;Jun Yin;Zong-Quan Wu
  • 通讯作者:
    Zong-Quan Wu
Ultra-broadband time-resolved coherent anti-Stokes Raman scattering microspectroscopy
超宽带时间分辨相干反斯托克斯拉曼散射显微光谱
  • DOI:
    10.1117/12.908609
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Yin;Guohui Hou;J. Qu;Zi;H. Niu
  • 通讯作者:
    H. Niu

Jun Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Yin', 18)}}的其他基金

Elucidating the Roles of E3 Ligases and Deubiquitinating Enzymes in Mitophagy by Orthogonal Ubiquitin Transfer and Linkage-Specific Ubiquitin Probes
通过正交泛素转移和连接特异性泛素探针阐明 E3 连接酶和去泛素化酶在线粒体自噬中的作用
  • 批准号:
    2109051
  • 财政年份:
    2021
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Elucidating Cell Signaling by Orthogonal Ubiquitin Transfer and Linkage-Specific di-Ubiquitin Probes
通过正交泛素转移和连接特异性二泛素探针阐明细胞信号传导
  • 批准号:
    1710460
  • 财政年份:
    2017
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
CAREER: Random Matrices and Many-Body Systems
职业:随机矩阵和多体系统
  • 批准号:
    1552192
  • 财政年份:
    2016
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Continuing Grant
CAREER: Identifying the Substrate Proteins of Nedd4 Family of E3 Ubiquitin Ligase by Orthogonal Ubiquitin Transfer (OUT)
职业:通过正交泛素转移 (OUT) 鉴定 E3 泛素连接酶 Nedd4 家族的底物蛋白
  • 批准号:
    1420193
  • 财政年份:
    2013
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Continuing Grant
Random Matrix Theory
随机矩阵理论
  • 批准号:
    1207961
  • 财政年份:
    2012
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Many-body System
多体系统
  • 批准号:
    1204086
  • 财政年份:
    2011
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
CAREER: Identifying the Substrate Proteins of Nedd4 Family of E3 Ubiquitin Ligase by Orthogonal Ubiquitin Transfer (OUT)
职业:通过正交泛素转移 (OUT) 鉴定 E3 泛素连接酶 Nedd4 家族的底物蛋白
  • 批准号:
    1057092
  • 财政年份:
    2011
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Continuing Grant
Many-body System
多体系统
  • 批准号:
    1001655
  • 财政年份:
    2010
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant

相似海外基金

Random Matrices and Functional Inequalities on Spaces of Graphs
图空间上的随机矩阵和函数不等式
  • 批准号:
    2331037
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306438
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
  • 批准号:
    2247117
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
  • 批准号:
    2331096
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
  • 批准号:
    2306332
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306439
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Continuing Grant
Random matrices, operators, and analytic functions
随机矩阵、运算符和解析函数
  • 批准号:
    2246435
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Continuing Grant
Random structures in high dimensions: Matrices, polynomials and point processes
高维随机结构:矩阵、多项式和点过程
  • 批准号:
    2246624
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
  • 批准号:
    RGPIN-2022-03483
  • 财政年份:
    2022
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Discovery Grants Program - Individual
Free Probability and Random Matrices
自由概率和随机矩阵
  • 批准号:
    RGPIN-2018-04458
  • 财政年份:
    2022
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了