Growth of Hybrid Polymeric Nanostructures for Enzyme-Free Amplified Protein Imaging

用于无酶放大蛋白质成像的混合聚合物纳米结构的生长

基本信息

  • 批准号:
    1802953
  • 负责人:
  • 金额:
    $ 31.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Proteins play essential roles in the body. However, because they have typically are found in low concentration, they can be very challenging to detect. Overcoming this challenge will not advance basic research and greatly improve the quality of diagnosis and the discovery of new therapeutics. The objective of this project is to develop a novel biosensing nanotechnology to amplify the signals of target proteins. The proteins that cannot be detected using traditional methods would be detected with this new technology. Students at different levels will be trained through hands-on research experience. Nationwide underrepresented students through diverse outreach activities at Penn State will be recruited to this program. The new knowledge to be generated through this program will be integrated into the classes offered to undergraduate and graduate students. Moreover, the knowledge will be broadly disseminated through high-profile journal publications and conference presentations. Protein examination is pivotal to virtually all fields related to biomedical sciences and clinical diagnostics as well. However, existing methods for in situ protein imaging and sensing often suffer from problems such as weak signal intensity, pigment/nanoparticle deposition and slow diffusion of bulky agents. The objective of this project is to explore a novel method for enzyme-free signal amplification in protein imaging via in situ growth of biomolecular nanostructures. The success of exploring this new method will address the critical unmet needs faced by existing methods for protein detection. In the proposed new method, each protein target will be represented by a supramolecular imaging nanostructure that carries a large number of fluorophores. Notably, the nanostructure will be grown in situ for imaging without the need of using any enzyme. Thus, it will not only provide signal amplification but also avoid potential enzyme- or nanoparticle-associated problems. The proposed research is designed with three tasks: 1) to understand how the compositions and structures of DNA molecules determine the formation of DNA nanostructures; 2) to synthesize and characterize hybrid DNA-based supramolecular nanostructures; and 3) to evaluate the effectiveness of this method in protein imaging. The accomplishment of this project will make broad impacts. Firstly, it will advance the methodology of protein sensing, benefiting a variety of biological and biomedical research areas that require highly sensitive protein imaging. Secondly, the fundamental understanding of DNA polymerization will provide a knowledge basis for the development of various DNA-based biosensors and materials. Thirdly, as clinical biopsies often have very small volumes, this enzyme-free signal amplification imaging method also holds great potential of improving clinical diagnostics. The broad impacts will be further strengthened by the development of human resources at different levels with active recruitment of nationwide underrepresented students through a diverse array of Penn State outreach programs, the publication of papers in high-profile journals and the dissemination of knowledge through invited seminars and conference presentations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蛋白质在体内起重要作用。但是,由于它们通常以低浓度发现,因此检测到它们可能非常具有挑战性。克服这一挑战将不会提高基础研究,并大大提高诊断质量和新的治疗剂的发现。该项目的目的是开发一种新型的生物传感纳米技术来扩大靶蛋白的信号。该新技术将检测到无法使用传统方法检测的蛋白质。不同级别的学生将通过动手研究经验进行培训。通过宾夕法尼亚州立大学的各种外展活动,全国代表性不足的学生将被招募到该计划。通过该计划生成的新知识将集成到提供给本科生和研究生的课程中。此外,知识将通过备受瞩目的期刊出版物和会议演讲大致传播。蛋白质检查与几乎所有与生物医学科学和临床诊断有关的领域都是关键的。然而,现有的原位蛋白成像和传感的方法通常会遇到诸如信号强度,色素/纳米颗粒沉积和笨重剂的缓慢扩散等问题。该项目的目的是探索一种新的方法,可通过生物分子纳米结构的原位生长在蛋白质成像中进行无酶的信号扩增。探索这种新方法的成功将解决现有方法检测现有方法所面临的关键未满足需求。在提出的新方法中,每个蛋白质靶标将由带有大量荧光团的超分子成像纳米结构表示。值得注意的是,纳米结构将在不需要使用任何酶的情况下进行原位成像。因此,它不仅会提供信号扩增,而且还可以避免潜在的酶或纳米颗粒相关的问题。拟议的研究设计了三个任务:1)了解DNA分子的组成和结构如何确定DNA纳米结构的形成; 2)合成并表征基于杂化DNA的超分子纳米结构; 3)评估该方法在蛋白质成像中的有效性。该项目的完成将产生广泛的影响。首先,它将推进蛋白质感测的方法,从而使需要高度敏感的蛋白质成像的各种生物学和生物医学研究领域受益。其次,对DNA聚合的基本理解将为开发各种基于DNA的生物传感器和材料的发展提供知识基础。第三,由于临床活检通常具有很小的体积,因此这种无酶的信号放大成像方法也具有改善临床诊断的巨大潜力。 The broad impacts will be further strengthened by the development of human resources at different levels with active recruitment of nationwide underrepresented students through a diverse array of Penn State outreach programs, the publication of papers in high-profile journals and the dissemination of knowledge through invited seminars and conference presentations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells
  • DOI:
    10.1038/s41467-019-10231-y
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Peng Shi;Nan Zhao;James Coyne;Yong Wang
  • 通讯作者:
    Peng Shi;Nan Zhao;James Coyne;Yong Wang
Synthetic DNA for Cell‐Surface Engineering
用于细胞表面工程的合成 DNA
  • DOI:
    10.1002/ange.202010278
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shi, Peng;Wang, Yong
  • 通讯作者:
    Wang, Yong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Wang其他文献

Chelation of the Optimal Antifungal Pogostone Analogue with Copper(II) to Explore the Dual Antifungal and Antibacterial Agent.
最佳抗真菌 Pogostone 类似物与铜 (II) 螯合,探索双重抗真菌和抗菌剂。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Delong Wang;Chunxia Yuan;Yunpeng Li;Shuhong Bai;Juntao Feng;Yong Wang;Yali Fang;Zhijia Zhang
  • 通讯作者:
    Zhijia Zhang
Mutual cancellation phenomenon of the nonlinearities in micro-machined double-clamped beams resonator
微机械双夹梁谐振腔非线性的相互抵消现象
  • DOI:
    10.1109/memsys.2018.8346728
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dongyang Chen;Xuying Chen;Yangyang Guan;Yong Wang;Zhonggui Xu;Yinshen Wang;H. Lin;Huicong Liu;Jin Xie
  • 通讯作者:
    Jin Xie
Effects of Milnacipran on the Multidimensional Aspects of Fatigue and the Relationship of Fatigue to Pain and Function: Pooled Analysis of 3 Fibromyalgia Trials
米那普仑对疲劳多维方面的影响以及疲劳与疼痛和功能的关系:3 项纤维肌痛试验的汇总分析
Silencing vascular endothelial growth factor C increases the radiosensitivity in nasopharyngeal carcinoma CNE‐2 cells
沉默血管内皮生长因子C增加鼻咽癌CNE-2细胞的放射敏感性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Feng Wang;Lisha Peng;Yong Wang;Xiaodong Liu
  • 通讯作者:
    Xiaodong Liu
Molecular Cloning and Expression of Ppdc-ldhL Fusion Gene in Zymomonas Mobilis ATCC 10988
运动发酵单胞菌 ATCC 10988 中 Ppdc-ldhL 融合基因的分子克隆和表达

Yong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Wang', 18)}}的其他基金

I-Corps: Development of Bent DNA Molecules as Amplifying Sensors
I-Corps:开发弯曲 DNA 分子作为放大传感器
  • 批准号:
    2129225
  • 财政年份:
    2021
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Standard Grant
IIBR Instrumentation: Collaborative Research: Development of a Single-Biomolecule Detection Instrument via Digital Counting of Nanoparticles
IIBR Instrumentation:合作研究:通过纳米颗粒数字计数开发单生物分子检测仪器
  • 批准号:
    1911764
  • 财政年份:
    2019
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Standard Grant
REU Site in IoT Security
物联网安全领域的 REU 站点
  • 批准号:
    1852145
  • 财政年份:
    2019
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Standard Grant
Understanding the antimicrobial mechanism of metal nanoparticles using super resolution fluorescence microscopy
使用超分辨率荧光显微镜了解金属纳米颗粒的抗菌机制
  • 批准号:
    1826642
  • 财政年份:
    2018
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Standard Grant
UKCRIC National Centre for Infrastructure Materials - Extreme Loading Facilities
UKCRIC 国家基础设施材料中心 - 极限负载设施
  • 批准号:
    EP/P017061/1
  • 财政年份:
    2017
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Research Grant
Structural and Fire Resistance of a Reusable Steel/Concrete Composite Floor System
可重复使用的钢/混凝土复合地板系统的结构和防火性能
  • 批准号:
    EP/N01135X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Research Grant
CAREER: Creation of Complex Biomimetic Materials via Molecular Recognition
职业:通过分子识别创建复杂的仿生材料
  • 批准号:
    1332351
  • 财政年份:
    2013
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Continuing Grant
Reversible Cell Capture and Release for Cell Separation
用于细胞分离的可逆细胞捕获和释放
  • 批准号:
    1340173
  • 财政年份:
    2013
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Equipment to Establish Mobile Testing Infrastructure for Bring Your Own Device Research and Education
MRI:采购设备以建立移动测试基础设施,以便自带设备进行研究和教育
  • 批准号:
    1337529
  • 财政年份:
    2013
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Standard Grant
Controlling Protein Release via Intermolecular Hybridization
通过分子间杂交控制蛋白质释放
  • 批准号:
    1342893
  • 财政年份:
    2013
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Standard Grant

相似国自然基金

在油菜中发展基因组选择技术助力新型种质资源库优良株系的鉴定和杂交种测配
  • 批准号:
    32171982
  • 批准年份:
    2021
  • 资助金额:
    59.00 万元
  • 项目类别:
    面上项目
亲本自交系对玉米杂交种抗旱能力的影响及机理解析
  • 批准号:
    32172113
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
在油菜中发展基因组选择技术助力新型种质资源库优良株系的鉴定和杂交种测配
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
亲本自交系对玉米杂交种抗旱能力的影响及机理解析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于全长转录组研究“西盘鲍”杂交种阶段性抗病菌杂种优势的机制
  • 批准号:
    31902369
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Transformative Strategies for the Production of Hybrid Luminescent and Semiconducting Molecular, Polymeric, and Self-Assembled Materials
混合发光和半导体分子、聚合物和自组装材料生产的变革策略
  • 批准号:
    RGPIN-2018-04240
  • 财政年份:
    2022
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Discovery Grants Program - Individual
Student Travel Support to 3D Printing of Polymeric Composites & Hybrid Systems Symposium at American Chemical Society National Meeting; San Diego, California; March 20-24, 2022
聚合物复合材料 3D 打印的学生旅行支持
  • 批准号:
    2129185
  • 财政年份:
    2021
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Standard Grant
Transformative Strategies for the Production of Hybrid Luminescent and Semiconducting Molecular, Polymeric, and Self-Assembled Materials
混合发光和半导体分子、聚合物和自组装材料生产的变革策略
  • 批准号:
    RGPIN-2018-04240
  • 财政年份:
    2021
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Discovery Grants Program - Individual
Transformative Strategies for the Production of Hybrid Luminescent and Semiconducting Molecular, Polymeric, and Self-Assembled Materials
混合发光和半导体分子、聚合物和自组装材料生产的变革策略
  • 批准号:
    RGPIN-2018-04240
  • 财政年份:
    2020
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Discovery Grants Program - Individual
Transformative Strategies for the Production of Hybrid Luminescent and Semiconducting Molecular, Polymeric, and Self-Assembled Materials
混合发光和半导体分子、聚合物和自组装材料生产的变革策略
  • 批准号:
    RGPIN-2018-04240
  • 财政年份:
    2019
  • 资助金额:
    $ 31.87万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了