GOALI: Collaborative Research: Electrochemical CO2 Separation and Capture through Design of Carbonate-Selective Catalysts and Ionomers
目标:合作研究:通过设计碳酸盐选择性催化剂和离聚物进行电化学二氧化碳分离和捕获
基本信息
- 批准号:1803255
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will explore electrochemical reactor technology capable of capturing carbon dioxide (CO2) emissions from power plants. Through a research collaboration between the University of South Carolina, the Pennsylvania State University, and Proton OnSite - a Connecticut small business that is a specialist at bringing electrochemical technologies to market - the project will combine elements of reactor design, catalysis, and separations to make critical scientific and engineering advances required for commercialization of CO2 capture at the industrial scale. The project will also provide opportunities for young researchers - including both high school and college students - to learn about electrochemistry, polymer science and applications of CO2 in academic, industrial and global contexts. The combined research and educational aspects of the study will help secure our Nation's future as a leader in clean energy technologies. The project aims to advance anion-exchange membrane (AEM) based CO2 separation reactors through: 1) realization of advanced catalysts that improve the rate of CO2 reaction and separation; 2) design of membranes that can control the chemical pathways in the cell; 3) high-performance cell design - aided by computer modeling; and 4) construction of commercial-fidelity reactors for testing under realistic environments. The research combines engineered materials, catalysts, and membranes to control the chemical state of CO2 as it is transported through the AEM. This is important because the reaction kinetics dictate the operating voltage and a combination of mass transport and thermodynamics act to control the power requirements through the anionic balance in the AEM - with hydroxide, bicarbonate and carbonate anions all being present. Bicarbonate anions are the preferred species for CO2 separation. On the catalyst side, the surface chemistry of transition metal oxide catalysts will be investigated to uncover the reaction mechanisms for direct electrocatalytic (bi)carbonate formation. On the polymer side, new alkaline ionomers will be synthesized to control the effective base dissociation constant (pKb) of the polymer at levels needed to maintain the electrocatalytically derived bicarbonate anion in its native form during transport through the reactor. The project will also simulate the behavior of such a CO2 separation reactor as an integrated component of a 500 MW coal-fired power plant, and will assess its current and future economic feasibility. Thus, the intellectual drivers of this work will encompass both the physical science of materials and electrochemical systems, as well as engineering design and economic considerations. Beyond the immediate thrusts, the research will have relevance in the materials, catalysis, and electrochemical communities as well as broader areas of carbon capture and economics of fossil energy technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将探索能够捕获发电厂排放的二氧化碳(CO2)的电化学反应器技术。通过南卡罗来纳州大学、宾夕法尼亚州立大学和Proton OnSite(康涅狄格州一家专门将电化学技术推向市场的小企业)之间的研究合作,该项目将联合收割机的反应器设计、催化和分离元素结合起来,以实现工业规模二氧化碳捕获商业化所需的关键科学和工程进步。该项目还将为年轻的研究人员提供机会-包括高中和大学生-学习电化学,聚合物科学和CO2在学术,工业和全球背景下的应用。这项研究的研究和教育方面的结合将有助于确保我们国家作为清洁能源技术领导者的未来。该项目旨在通过以下方式推进基于阴离子交换膜(AEM)的CO2分离反应器:1)实现提高CO2反应和分离速率的先进催化剂; 2)设计可以控制电池中化学途径的膜; 3)高性能电池设计-由计算机建模辅助;以及4)构建商业保真度反应器,用于在现实环境下进行测试。该研究结合了工程材料,催化剂和膜,以控制CO2在通过AEM运输时的化学状态。这是重要的,因为反应动力学决定了操作电压,并且传质和热力学的组合通过AEM中的阴离子平衡来控制功率需求-其中氢氧化物、碳酸氢盐和碳酸盐阴离子都存在。二价阴离子是CO2分离的优选物质。在催化剂方面,将研究过渡金属氧化物催化剂的表面化学,以揭示直接电催化碳酸氢盐形成的反应机理。在聚合物方面,将合成新的碱性离聚物以将聚合物的有效碱解离常数(pKb)控制在所需的水平,以在通过反应器的运输期间将电催化衍生的碳酸氢根阴离子保持在其天然形式。该项目还将模拟这种CO2分离反应器作为500 MW燃煤电厂集成组件的行为,并将评估其当前和未来的经济可行性。因此,这项工作的智力驱动因素将包括材料和电化学系统的物理科学,以及工程设计和经济考虑。除了直接的推动力,该研究将在材料,催化和电化学社区以及碳捕获和化石能源技术的经济学更广泛的领域的相关性。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Hickner其他文献
The impact of membrane orientation on ion flux in bipolar membranes
膜取向对双极膜中离子通量的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.5
- 作者:
H. Cassady;Maria F. Rochow;Michael Hickner - 通讯作者:
Michael Hickner
Designing anion exchange membranes for CO2 electrolysers
为二氧化碳电解槽设计阴离子交换膜
- DOI:
10.1038/s41560-020-00761-x - 发表时间:
2021-02-11 - 期刊:
- 影响因子:60.100
- 作者:
Danielle A. Salvatore;Christine M. Gabardo;Angelica Reyes;Colin P. O’Brien;Steven Holdcroft;Peter Pintauro;Bamdad Bahar;Michael Hickner;Chulsung Bae;David Sinton;Edward H. Sargent;Curtis P. Berlinguette - 通讯作者:
Curtis P. Berlinguette
Michael Hickner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Hickner', 18)}}的其他基金
DMREF: Collaborative Research: Development of Design Rules for High Hydroxide Transport in Polymer Architectures
DMREF:协作研究:聚合物结构中高氢氧化物传输设计规则的开发
- 批准号:
1534326 - 财政年份:2015
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
EAGER: Electropolymerized Layers with Tuned Light Absorption and Charge Transport Properties
EAGER:具有调节光吸收和电荷传输特性的电聚合层
- 批准号:
1038007 - 财政年份:2010
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:
2245117 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129825 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:
2219788 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:
2302217 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147126 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147122 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
- 批准号:
2032261 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
- 批准号:
2126461 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
- 批准号:
2050691 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant