DMREF: Collaborative Research: Development of Design Rules for High Hydroxide Transport in Polymer Architectures

DMREF:协作研究:聚合物结构中高氢氧化物传输设计规则的开发

基本信息

  • 批准号:
    1534326
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

In this project funded by the Designing Materials to Revolutionize and Engineer our Future (DMREF) Program of the Chemistry Division, Professor Mark Tuckerman at New York University, Professor Chulsung Bae at Rensselaer Polytechnic Institute, Professor Michael Hickner of the Pennsylvania State University, and Professor Stephen Paddison of the University of Tennessee are designing, synthesizing, and testing new materials for use in alkaline fuel cells and discovering a set of rules for best practices in the development of future materials for fuel cell applications. As the United States seeks to enhance its energy security through identification and development of clean energy sources a range of technologies need to be leveraged in order to secure a sustainable energy supply. Electrochemical devices are an important part of this mix of technologies, and among these, fuel cells constitute some of the cleanest and most sustainable technologies. Several key hurdles to harnessing the potential of fuel cells (as well as various other electrochemical technologies) remain to be surmounted. The team of investigators are focusing on anion exchange membrane fuel cells that have advantages over other types of fuel cells in not requiring precious metals and being operable with a variety of fuels at low temperature. The project is employing a cohesive strategy involving mathematical and computer modeling of specific materials components that may, in turn, guide the synthesis of new materials, the characterization and testing of these materials in actual fuel cells, and the determination of optimal design principles to govern future materials engineering in this area. The project is also providing education and training for graduate and post-graduate researchers in both theoretical and experimental aspects of materials science and engineering, thus ensuring the competence and creativity of the next generation of STEM researchers. The understanding and design of cost-effective and reliable polymer architectures for use as ion-conducting membranes is an important challenge facing emerging electrochemical device technologies. Currently available proton exchange membranes are problematic due to high cost, environmental concerns of fluoroplymers, and often poor performance under nonideal conditions. Additional challenges in proton exchange membranes fuel cell applications include difficult water management due to electro-osmosis, high fuel crossover, and the requirement of expensive platinum catalysts. Fuel cells based on anion exchange membranes have the potential to alleviate most of these problems. However, little systematic knowledge of how best to design these materials exists at present despite the fact that liquid-electrolyte alkaline fuel cells were among the first fuel cells to be developed. The team of researchers is applying an integrated, iterative theoretical-experimental approach towards the targeted syntheses of polymers, the first-principles computer simulations of specific polymer chemistries, the mathematical and experimental characterization of structures/morphologies, and the measurement and computational modeling of long-range hydroxide ion transport. Through this cohesive effort, the team of investigators is aiming to advance fundamental science and engineering knowledge in the area of fuel cells membranes and to deduce a set of fundamental design principles for anion exchange membranes that accelerate the time between concept and production of practically useful materials.
在这个由化学部的设计材料革命和工程未来(DMREF)计划资助的项目中,纽约大学的Mark塔克曼教授,伦斯勒理工学院的Chulsung Bae教授,宾夕法尼亚州立大学的Michael Hickner教授和田纳西大学的Stephen Paddison教授正在设计,合成,测试用于碱性燃料电池的新材料,并为燃料电池应用的未来材料的开发发现一套最佳实践规则。 在美国寻求通过确定和开发清洁能源来加强其能源安全的同时,需要利用一系列技术来确保可持续的能源供应。 电化学设备是这种技术组合的重要组成部分,其中,燃料电池构成了一些最清洁和最可持续的技术。利用燃料电池(以及各种其他电化学技术)潜力的几个关键障碍仍有待克服。 研究人员团队专注于阴离子交换膜燃料电池,该电池与其他类型的燃料电池相比具有优势,不需要贵金属,并且可以在低温下使用各种燃料。该项目采用了一种内聚策略,涉及特定材料组件的数学和计算机建模,这些组件反过来可以指导新材料的合成,这些材料在实际燃料电池中的表征和测试,以及确定最佳设计原则以管理该领域未来的材料工程。该项目还为材料科学和工程的理论和实验方面的研究生和研究生研究人员提供教育和培训,从而确保下一代STEM研究人员的能力和创造力。理解和设计具有成本效益和可靠的聚合物结构用作离子传导膜是新兴电化学器件技术面临的重要挑战。目前可用的质子交换膜由于高成本、含氟聚合物的环境问题以及在非理想条件下通常性能差而存在问题。质子交换膜燃料电池应用中的额外挑战包括由于电渗透而导致的水管理困难、高燃料交叉以及需要昂贵的铂催化剂。基于阴离子交换膜的燃料电池具有缓解这些问题的潜力。然而,尽管液体电解质碱性燃料电池是最早开发的燃料电池之一,但目前关于如何最好地设计这些材料的系统知识还很少。研究人员团队正在应用一种集成的迭代理论实验方法来实现聚合物的目标合成,特定聚合物化学的第一原理计算机模拟,结构/形态的数学和实验表征,以及远程氢氧根离子传输的测量和计算建模。 通过这种凝聚力的努力,研究人员团队的目标是推进燃料电池膜领域的基础科学和工程知识,并推导出一套基本的阴离子交换膜设计原则,以加快概念和生产实用材料之间的时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Hickner其他文献

The impact of membrane orientation on ion flux in bipolar membranes
膜取向对双极膜中离子通量的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    H. Cassady;Maria F. Rochow;Michael Hickner
  • 通讯作者:
    Michael Hickner
Designing anion exchange membranes for CO2 electrolysers
为二氧化碳电解槽设计阴离子交换膜
  • DOI:
    10.1038/s41560-020-00761-x
  • 发表时间:
    2021-02-11
  • 期刊:
  • 影响因子:
    60.100
  • 作者:
    Danielle A. Salvatore;Christine M. Gabardo;Angelica Reyes;Colin P. O’Brien;Steven Holdcroft;Peter Pintauro;Bamdad Bahar;Michael Hickner;Chulsung Bae;David Sinton;Edward H. Sargent;Curtis P. Berlinguette
  • 通讯作者:
    Curtis P. Berlinguette

Michael Hickner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Hickner', 18)}}的其他基金

GOALI: Collaborative Research: Electrochemical CO2 Separation and Capture through Design of Carbonate-Selective Catalysts and Ionomers
目标:合作研究:通过设计碳酸盐选择性催化剂和离聚物进行电化学二氧化碳分离和捕获
  • 批准号:
    1803255
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
EAGER: Electropolymerized Layers with Tuned Light Absorption and Charge Transport Properties
EAGER:具有调节光吸收和电荷传输特性的电聚合层
  • 批准号:
    1038007
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了