Real-Time Sensing of Neurotransmitters From Stem Cell-derived Neural Interface Using Hybrid Graphene-Nanostructures
使用混合石墨烯纳米结构实时感测干细胞衍生神经界面的神经递质
基本信息
- 批准号:1803517
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neurotransmitters are one of the most critical biomolecules in the brain. They play a vital role in preserving neurophysiological processes such as cognition, memory, and behavior. For example, the abnormal levels of neurotransmitters may result in severe neurological disorders such as Parkinson's disease, schizophrenia, and Huntington's disease. In the case of Parkinson's disease, most patients have lost more than 80% of their production of dopamine neurotransmitter. Stem cell-based therapy to create dopamine-producing (dopaminergic) neurons that can be implanted into patients has emerged as a promising approach for treating Parkinson's disease. The functionality of stem cell-derived dopaminergic neurons can be confirmed by the detection of dopamine. The proposed biosensing system has the capability of real-time monitoring of stem cell differentiation by detecting neurotransmitters. It will accelerate the development of stem cell therapies by removing some bottlenecks in current stem cell therapies. Moreover, the proposed biosensor will be an excellent sensing platform to advance research and development in regenerative medicine and neuroscience.The scientific goal of this proposal is to investigate how stem cells can generate a neural interface with functional neurons by detecting neurotransmitters selectively and effectively. Conventional neurotransmitter detection methods suffer from non-specific sensing and lack of in situ analysis. Addressing current challenges in the detection of neurotransmitters, a novel in situ nano-biosensor using graphene oxide-covered nanostructure arrays as a platform to real-time monitor mature neuronal differentiation of stem cells will be developed by detecting the secreted neurotransmitters in a noninvasive manner. For this purpose, the proposal focuses on the synthesis of chemically well-defined graphene oxide-nanostructures and the development of graphene-based hybrid nanoelectrode arrays to generate stable and reproducible signals. The developed novel graphene-based hybrid nanoelectrode arrays detect dopamine molecules selectively and sensitively using surface-enhanced Raman scattering technique. Raman dye (graphene oxide)-labeled aptamers targeting dopamine molecules are attached to the surface of graphene oxide-covered nanostructure arrays through the pi-pi interactions, resulting in a Raman enhancement from the graphene oxide nanostructures. The loss of binding affinity between nucleotides and the Raman dye (malachite green molecules)-labeled aptamers after the dye-labeled aptamers reacted with dopamine will consequently decrease the Raman signal for quantitative analysis. The whole processes enable the detection of low concentration of dopamine in the neural interface. Upon successful completion, the proposed nano-biosensing system will facilitate the study of a biological phenomenon by monitoring cell secretions from complex biological matrices. The proposal takes advantage of the graphene functionalized surface and the highly selective bio-recognition elements to fabricate a novel hybrid graphene-nanostructure-based real-time sensing system to act as a multi-purpose sensor platform for the detection of a variety of molecules. Given the challenges of in situ detection of neurotransmitters at the single cell level, this surface-enhanced Raman scattering-based detection method can represent a unique tool for investigating single-cell mechanisms associated with dopamine, or other neurotransmitters, and their roles in neurological processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经递质是大脑中最重要的生物分子之一。它们在保护神经生理过程中起着至关重要的作用,如认知,记忆和行为。例如,神经递质的异常水平可能导致严重的神经系统疾病,如帕金森病、精神分裂症和亨廷顿病。在帕金森病的情况下,大多数患者已经失去了超过80%的多巴胺神经递质的生产。以干细胞为基础的治疗,以创造多巴胺产生(多巴胺能)神经元,可以植入病人已经成为一个有前途的方法治疗帕金森氏病。干细胞衍生的多巴胺能神经元的功能可以通过检测多巴胺来确认。所提出的生物传感系统具有通过检测神经递质来实时监测干细胞分化的能力。 它将通过消除当前干细胞疗法中的一些瓶颈来加速干细胞疗法的发展。此外,该生物传感器将是一个很好的传感平台,以推动再生医学和神经科学的研究和发展。这项计划的科学目标是研究干细胞如何通过选择性和有效地检测神经递质来产生与功能神经元的神经界面。传统的神经递质检测方法存在非特异性检测和缺乏原位分析的问题。针对目前神经递质检测面临的挑战,一种新型的原位纳米生物传感器,使用氧化石墨烯覆盖的纳米结构阵列作为平台,实时监测成熟的干细胞神经元分化,将开发通过检测分泌的神经递质在一个非侵入性的方式。为此,该提案的重点是化学定义明确的氧化石墨烯纳米结构的合成和石墨烯基混合纳米电极阵列的开发,以产生稳定和可再现的信号。所开发的新型石墨烯基混合纳米电极阵列使用表面增强拉曼散射技术选择性地和灵敏地检测多巴胺分子。靶向多巴胺分子的拉曼染料(氧化石墨烯)标记的适体通过π-π相互作用附着到氧化石墨烯覆盖的纳米结构阵列的表面,导致氧化石墨烯纳米结构的拉曼增强。在染料标记的适体与多巴胺反应后,核苷酸与拉曼染料(孔雀石绿色分子)标记的适体之间的结合亲和力的损失将因此降低用于定量分析的拉曼信号。整个过程使得能够检测神经界面中的低浓度多巴胺。成功完成后,拟议的纳米生物传感系统将通过监测复杂生物基质中的细胞分泌物来促进生物现象的研究。该提案利用石墨烯功能化表面和高度选择性的生物识别元件来制造一种新型的基于石墨烯-纳米结构的混合实时传感系统,以作为用于检测各种分子的多用途传感器平台。鉴于在单细胞水平上原位检测神经递质的挑战,这种基于表面增强拉曼散射的检测方法可以代表用于研究与多巴胺或其他神经递质相关的单细胞机制的独特工具,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的评估来支持。影响审查标准。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clustered Regularly Interspaced Short Palindromic Repeats-Mediated Amplification-Free Detection of Viral DNAs Using Surface-Enhanced Raman Spectroscopy-Active Nanoarray
- DOI:10.1021/acsnano.1c03975
- 发表时间:2021-08-09
- 期刊:
- 影响因子:17.1
- 作者:Choi, Jin-Ha;Shin, Minkyu;Choi, Jeong-Woo
- 通讯作者:Choi, Jeong-Woo
Functional nanoarrays for investigating stem cell fate and function.
- DOI:10.1039/c9nr10963c
- 发表时间:2020-05-07
- 期刊:
- 影响因子:6.7
- 作者:Lee JH ;Luo J ;Choi HK ;Chueng SD ;Lee KB ;Choi JW
- 通讯作者:Choi JW
Nondestructive Characterization of Stem Cell Neurogenesis by a Magneto-Plasmonic Nanomaterial-Based Exosomal miRNA Detection
- DOI:10.1021/acsnano.9b01875
- 发表时间:2019-08-01
- 期刊:
- 影响因子:17.1
- 作者:Lee, Jin-Ho;Choi, Jin-Ha;Lee, Ki-Bum
- 通讯作者:Lee, Ki-Bum
Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications.
- DOI:10.1186/s40580-022-00310-0
- 发表时间:2022-04-28
- 期刊:
- 影响因子:11.7
- 作者:Chuang ST;Conklin B;Stein JB;Pan G;Lee KB
- 通讯作者:Lee KB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KiBum Lee其他文献
KiBum Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KiBum Lee', 18)}}的其他基金
I-Corps: NanoScript: A Nanoparticle-Based Artificial Transcription Factor for Effective Gene Regulation and Stem Cell Differentiation
I-Corps:NanoScript:一种基于纳米颗粒的人工转录因子,用于有效的基因调控和干细胞分化
- 批准号:
1531026 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
MRI: Development of multifunctional scanning probe microscope for nanofabrication and nanomaterials research
MRI:开发用于纳米制造和纳米材料研究的多功能扫描探针显微镜
- 批准号:
1429062 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
- 批准号:71671098
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
- 批准号:11504059
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
- 批准号:
10100967 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
EU-Funded
Collaborative Research: NSF/MCB: Repurposing metabolite-responsive aptamers for real-time sensing and dynamic control of Cas6-mediated metabolon assembly
合作研究:NSF/MCB:重新利用代谢物响应适体,用于 Cas6 介导的代谢物组装的实时传感和动态控制
- 批准号:
2317399 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: NSF/MCB: Repurposing metabolite-responsive aptamers for real-time sensing and dynamic control of Cas6-mediated metabolon assembly
合作研究:NSF/MCB:重新利用代谢物响应适体,用于 Cas6 介导的代谢物组装的实时传感和动态控制
- 批准号:
2317398 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Redefining the future of electromagnetic sensing: portable single-pixel millimeter-wave cameras operating in real-time
重新定义电磁传感的未来:实时运行的便携式单像素毫米波相机
- 批准号:
EP/X022943/1 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Fellowship
Energy-Efficient Broadband Spectrum Sensing in Real Time Based on a Frequency-Domain Analog Signal Processor
基于频域模拟信号处理器的实时节能宽带频谱感测
- 批准号:
2318759 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
- 批准号:
10854070 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Building a two-way communication system: Bio-orthogonal superhydrophobic nanoparticles for controlled stimulation and real-time sensing of neurotransmitters
构建双向通信系统:生物正交超疏水纳米颗粒用于神经递质的受控刺激和实时传感
- 批准号:
10473375 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
CAREER: Real-Time, Selective Gas Sensing in Complex Gas Compositions by Molecular Sieving via Robust Two-Dimensional Heterostructures
职业:通过稳健的二维异质结构进行分子筛分,对复杂气体成分进行实时、选择性气体传感
- 批准号:
2145549 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Development of near real-time monitoring system of volcanic gas flux using satellite remote sensing techniques
利用卫星遥感技术开发火山气体通量近实时监测系统
- 批准号:
22K14109 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists