Building a two-way communication system: Bio-orthogonal superhydrophobic nanoparticles for controlled stimulation and real-time sensing of neurotransmitters
构建双向通信系统:生物正交超疏水纳米颗粒用于神经递质的受控刺激和实时传感
基本信息
- 批准号:10473375
- 负责人:
- 金额:$ 134.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAcidsAction PotentialsAffectAlzheimer&aposs DiseaseAmericanBiologyBrainChemicalsCommunicationDevelopmentDiseaseEpilepsyFluorineFluorocarbonsFunctional ImagingFunctional disorderGoalsHydrophobicityIn VitroIonsKnowledgeLearningLightMembrane PotentialsMemoryMental disordersMissionMonitorNerve DegenerationNeurodegenerative DisordersNeuronsNeurotransmittersOrganismPhysiologicalPublic HealthResearchResearch PersonnelSignal TransductionSystemTechnologyTimeUnited States National Institutes of HealthWaterWorkaqueousbrain healthgut microbiomein vivoin vivo imaginginterfaciallipophilicitylipophobicitynanoparticlenanosensorsnervous system disorderneurotransmissionnovelsmall moleculetoolvoltage sensitive dye
项目摘要
Project Summary:
Technologies for monitoring chemical signaling in neuronal activities have long been desired
to understand the mysterious function of the brain, and the unravel underlying mechanisms of
neurological disorders such as epilepsy and Alzheimer’s disease. This project creates novel bio-
orthogonal nanosensors for in-vitro and in-vivo imaging of physiological ions and small molecule
neurotransmitters such as acetylcholine. Physiological ions such as K+, Na+, Cl-, and Ca2+ are
key to membrane potential of the neuron, and propagation of action potentials. In-vitro and in-
vivo recording of levels of these ions during neuronal communication has been focus of
research for decades. The neurotransmitter acetylcholine (ACh) is involved in memory and
learning with implications in Alzheimer’s disease and psychiatric disorders. Studying ACh is
important for unravelling the pathophysiology of neurodegenerative and understudying the
connection between the gut microbiome and brain health. The scope of work proposed in this
application has potential to contribute major advances in public health through better
understanding of disease pathophysiology.
The immediate goal of this proposal to create bio-orthogonal fluorous nanosensors with dual
functionalities. To sense ionic neurotransmitters and to release these compounds upon light
stimulation. The nanoparticles will be developed using fluorous materials. Fluorous compounds
(molecules with high content of fluorine atoms) are extremely non-polar and non-polarizable to
the extent that they are not miscible with water and fatty substances. That is, fluorinated
compounds are both hydrophobic and lipophobic. As a matter of fact, living systems are made
of water and lipophilic compounds, making fluorocarbons bio-orthogonal, meaning that they do
not interfere with biology. This feature allows development of stable and nontoxic nanosensors
with widespread applications. The scientific questions that this proposal is answering are (i) Can
we control the fluorous- aqueous interface and use partially fluorinated voltage sensitive dyes
for contact-free readout of interfacial potential? (ii) Can we record chemical signaling in neuronal
communication using a platform and modular fluorous nanosensor? (iii) Can we trap fluorinated
metastable-photo-acids in superhydrophobic nanoparticles and use blue light for local release of
ionic moieties? (iv) Can we use local release of ions to start a dialogue with nerve cells, and
mimic the chemical signaling?
项目总结:
长期以来,人们一直希望使用监测神经元活动中的化学信号的技术。
为了了解大脑的神秘功能,以及揭开
神经性疾病,如癫痫和阿尔茨海默病。该项目创造了新的生物
用于生理离子和小分子体内外成像的正交型纳米传感器
神经递质,如乙酰胆碱。K+、Na+、Cl-、Ca2+等生理离子
神经元膜电位和动作电位传播的关键。体外和体外-
在神经元通讯过程中活体记录这些离子的水平一直是
几十年来的研究。神经递质乙酰胆碱(ACh)参与记忆和
学习与阿尔茨海默病和精神障碍的关系。学习ACH是
对于揭开神经退行性变的病理生理学和深入研究
肠道微生物群和大脑健康之间的联系。本文件中提议的工作范围
应用程序有可能通过更好的
了解疾病的病理生理学。
这项提议的直接目标是创建具有双重结构的生物正交氟纳米传感器
功能。感受离子神经递质,并在光线下释放这些化合物
刺激。这种纳米粒子将使用含氟材料进行开发。含氟化合物
(氟原子含量高的分子)是极非极性和非极化的
它们与水和脂肪物质不相容的程度。也就是说,氟化
化合物既是疏水的,又是疏油的。事实上,生命系统是由
水和亲脂化合物,使氟碳化合物具有生物正交性,这意味着它们确实
而不是干扰生物学。这一特征使稳定和无毒的纳米传感器得以开发
有着广泛的应用。这项提议回答的科学问题是:(I)可以
我们控制氟-水界面,并使用部分氟化的压敏染料
用于非接触式界面电势读数?(Ii)我们能记录神经元中的化学信号吗?
使用平台和模块化氟纳米传感器进行通信?(Iii)我们能捕获氟化物吗?
超疏水纳米粒中的亚稳态光酸,并使用蓝光局部释放
离子部分?(四)能否通过局部释放离子与神经细胞展开对话,以及
模仿化学信号?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maral Mousavi其他文献
Maral Mousavi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maral Mousavi', 18)}}的其他基金
HORNET Center for Autonomic Nerve Recording and Stimulation Systems (CARSS)
HORNET 自主神经记录和刺激系统中心 (CARSS)
- 批准号:
10557006 - 财政年份:2022
- 资助金额:
$ 134.48万 - 项目类别:
HORNET Center for Autonomic Nerve Recording and Stimulation Systems (CARSS)
HORNET 自主神经记录和刺激系统中心 (CARSS)
- 批准号:
10706622 - 财政年份:2022
- 资助金额:
$ 134.48万 - 项目类别:
相似国自然基金
具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
- 批准号:22007039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
- 批准号:21372217
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
- 批准号:21172061
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
- 批准号:21176225
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
- 批准号:81072511
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
- 批准号:30660215
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 134.48万 - 项目类别:
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 134.48万 - 项目类别:
Continuing Grant
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 134.48万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 134.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
- 批准号:
477891 - 财政年份:2023
- 资助金额:
$ 134.48万 - 项目类别:
Operating Grants
Metabolomic profiles of responders and non-responders to an omega-3 fatty acids supplementation.
对 omega-3 脂肪酸补充剂有反应和无反应者的代谢组学特征。
- 批准号:
495594 - 财政年份:2023
- 资助金额:
$ 134.48万 - 项目类别:
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 134.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
- 批准号:
23H02086 - 财政年份:2023
- 资助金额:
$ 134.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 134.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 134.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




