The Role of Hydrodynamics in the Behavior of Active Matter

流体动力学在活性物质行为中的作用

基本信息

  • 批准号:
    1803662
  • 负责人:
  • 金额:
    $ 33.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

A distinguishing feature of many living organisms is their ability to move, to self-propel, to be active. Constituents of "active matter" systems are capable of independent self-propulsion by converting fuel into mechanical motion. Examples of active matter include both microscopic entities like microorganisms and motor proteins within our cells and large bodies like fishes and birds. Inanimate, nonliving bodies can also achieve self-propulsion using mechanisms that are different than living organisms. The outcome of the collective behavior of these nonliving active systems is not necessarily different from living active systems. Indeed, active matter systems of all scales have the tendency to associate together and move collectively, from colonies of bacteria, swarms of insects, flocks of birds, schools of fish, to herds of cattle. The question addressed in this research is the micromechanical, hydrodynamic, origin for living (and nonliving) organisms to exhibit collective and coherent motion and how it can be explained and modeled using simple physical principles. Such insight will enable the prediction, design, and control of active soft matter systems and their exploitation in nature and in industry.The intrinsic activity imparts new behaviors to active matter that distinguish it from equilibrium condensed matter systems. Active matter systems generate their own internal stress, which drives them far from equilibrium and thus frees them from conventional thermodynamic constraints, and by so doing can control and direct their own behavior and that of their surrounding environment. Active matter is always at least a two-component system - the active body and the embedding medium off of which the active body self-propels. In this research fluid-mediated hydrodynamic interactions among self-propelled bodies are incorporated for the first time. Hydrodynamics significantly affect the forces active particles exert on boundaries or other objects and can profoundly affect the phase separation in active systems by modifying the mechanical "swim pressure." The swim pressure provides a pressure-concentration relation for active matter that can quantitatively predict condensation and phase separation in active systems and provides a route for determining the amount of work that can be harvested from the often random motion of active systems. We also show that, in general, the swim stress has off-diagonal or deviatoric contributions, especially when an active system is subject to shearing motion. The swim stress predicts that, under very general conditions, active particles can reduce the suspension effective viscosity to zero, enabling spontaneous flow of active matter. The mechanical swim stress perspective allows one to understand, analyze and exploit a wide class of active soft matter systems, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多活着的有机体的一个显著特征是它们能够移动、自我推进和活跃。“活性物质”系统的组成部分能够通过将燃料转化为机械运动来独立地自我推进。活性物质的例子既包括我们细胞中的微生物和马达蛋白等微观实体,也包括鱼类和鸟类等大型实体。无生命、无生命的身体也可以使用不同于生物的机制来实现自我推进。这些无生命的主动系统的集体行为的结果不一定与有生命的主动系统不同。事实上,所有尺度的活动物质系统都有相互联系和集体移动的趋势,从细菌群体、昆虫群体、鸟类群体、鱼群到牛群。这项研究涉及的问题是微机械、流体动力学、生物(和非生物)的起源以及如何用简单的物理原理来解释和模拟这种集体和连贯的运动。这种洞察力将使活性软物质系统的预测、设计和控制及其在自然界和工业上的开发成为可能。本征活性赋予活性物质新的行为,使其有别于平衡凝聚态物质系统。活性物质系统产生自己的内应力,使它们远离平衡,从而使它们从传统的热力学约束中解放出来,通过这样做,可以控制和指导自己和周围环境的行为。活性物质总是至少是一个双组分系统--活性物质和嵌入介质,活性物质通过它自动推进。在这项研究中,首次将流体介导的自行体之间的水动力相互作用纳入其中。流体动力学显著影响活性粒子施加在边界或其他物体上的力,并通过改变机械“游泳压力”来深刻影响活性体系中的相分离。游泳压力提供了活性物质的压力-浓度关系,可以定量地预测活性体系中的凝结和相分离,并提供了一种确定从活性体系经常随机运动中获得的功量的途径。我们还表明,一般来说,游泳应力具有非对角线或偏角的贡献,特别是当一个活跃的系统受到剪切运动的影响时。游泳压力预测,在非常一般的条件下,活性颗粒可以将悬浮液的有效粘度降低到零,从而使活性物质能够自发流动。机械游泳压力视角使人们能够了解、分析和开发一大类活跃的软物质系统,从游泳细菌到催化纳米机器人,再到激活细胞骨架的分子马达。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phoretic motion in active matter
活性物质中的泳动
  • DOI:
    10.1017/jfm.2021.530
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Brady, John F.
  • 通讯作者:
    Brady, John F.
Upstream swimming and Taylor dispersion of active Brownian particles
  • DOI:
    10.1103/physrevfluids.5.073102
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhiwei Peng;J. Brady
  • 通讯作者:
    Zhiwei Peng;J. Brady
Reverse osmotic effect in active matter
活性物质的反渗透效应
  • DOI:
    10.1103/physreve.101.062604
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Row, Hyeongjoo;Brady, John F.
  • 通讯作者:
    Brady, John F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Brady其他文献

Assessing Full Participation within Places of Worship: Survey on Disability and Inclusion within the Archdiocese of Chicago
  • DOI:
    10.1016/j.apmr.2016.08.342
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Susan Brady;Joseph A. Mulcrone;Stephanie Salentine;John Brady;Susan Brady
  • 通讯作者:
    Susan Brady
Radiation-Hardened Delay-Insensitive Asynchronous Circuits for Multi-Bit SEU Mitigation and Data-Retaining SEL Protection
用于多位 SEU 缓解和数据保留 SEL 保护的抗辐射延迟不敏感异步电路
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Brady
  • 通讯作者:
    John Brady
Extragonadal teratoma in a fallopian tube; a common entity in an uncommon location
  • DOI:
    10.1016/j.pathol.2023.12.168
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Brady;Kyung Park
  • 通讯作者:
    Kyung Park
Beamspace MIMO Channel Modeling and Measurement: Methodology and Results at 28GHz
Beamspace MIMO 信道建模和测量:28GHz 的方法和结果
Allergy testing at OLCHC
  • DOI:
    10.1186/2045-7022-5-s3-o19
  • 发表时间:
    2015-03-30
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Cathryn O'Carroll;John Brady;Joe McNamara;Philip Mayne;Aideen Byrne
  • 通讯作者:
    Aideen Byrne

John Brady的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Brady', 18)}}的其他基金

A Workshop to Share, Explore, Develop, and Evaluate Online Petrology Teaching Resources and Strategies in Varied and Evolving Geoscience Education Settings
在多样化和不断发展的地球科学教育环境中分享、探索、开发和评估在线岩石学教学资源和策略的研讨会
  • 批准号:
    2319132
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Chemically-induced phoretic flow, or how to turn a curtain of light into virtual micro-fluidic boundaries
NSF-DFG Confine:化学诱导泳流,或如何将光幕转变为虚拟微流体边界
  • 批准号:
    2223481
  • 财政年份:
    2022
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
The Pressure of Active Matter
活性物质的压力
  • 批准号:
    1437570
  • 财政年份:
    2014
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Suspension Rheology at Constant Pressure
恒压悬浮液流变学
  • 批准号:
    1337097
  • 财政年份:
    2013
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Building Analytical Competence for Geoscience Students through use of Spectroscopic Tools
通过使用光谱工具培养地球科学学生的分析能力
  • 批准号:
    1140444
  • 财政年份:
    2012
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Microrheology of colloidal glasses and gels
合作研究:胶体玻璃和凝胶的微观流变学
  • 批准号:
    1236242
  • 财政年份:
    2012
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Scanning Electron Microscope
MRI:购买扫描电子显微镜
  • 批准号:
    1039707
  • 财政年份:
    2010
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Particle Motion in Colloidal Dispersions: Microrheology and Microdiffusivity
胶体分散体中的粒子运动:微流变学和微扩散性
  • 批准号:
    0931418
  • 财政年份:
    2009
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Osmotic Propulsion: The Osmotic Motor
渗透推进:渗透马达
  • 批准号:
    0754967
  • 财政年份:
    2008
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Suspensions and Granular Media: Wet vs. Dry
悬浮液和颗粒介质:湿法与干法
  • 批准号:
    0828563
  • 财政年份:
    2008
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
  • 批准号:
    51078108
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidating Hydrodynamics at Confined Interfaces for Artificial Active Fluidics and Beyond
阐明人工主动流体学及其他领域的受限界面处的流体动力学
  • 批准号:
    MR/X03660X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Fellowship
Hydrodynamics of quantum fluids
量子流体的流体动力学
  • 批准号:
    DP240101033
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Discovery Projects
CAREER: Collective hydrodynamics within viscous interfaces: activity and assembly in membranes and monolayers
职业:粘性界面内的集体流体动力学:膜和单层中的活性和组装
  • 批准号:
    2340415
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Enhanced Multiscale Approaches for Simulations of Multicomponent Fluids with Complex Interfaces using Fluctuating Hydrodynamics
RII Track-4:NSF:使用脉动流体动力学模拟具有复杂界面的多组分流体的增强多尺度方法
  • 批准号:
    2346036
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Time-Dependent Hydrodynamics in Uniform Fermi Gases
均匀费米气体中的瞬态流体动力学
  • 批准号:
    2307107
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
The development of new Smoothed Particle Hydrodynamics algorithm for dynamic fracture
用于动态断裂的新平滑粒子流体动力学算法的开发
  • 批准号:
    2894121
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Studentship
Clarification of Energy Mechanisms in Supercritical Accretion Flows on to Neutron Stars through Hydrodynamics and Radiative Transfer Simulations
通过流体动力学和辐射传输模拟阐明中子星超临界吸积流的能量机制
  • 批准号:
    22KJ0368
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-BSF: The Evolution of Hydrodynamics, Mechanics, & Prey Capture in the Feeding of Misfit Fish
NSF-BSF:流体动力学、力学、
  • 批准号:
    2326484
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
The development of new Smoothed Particle Hydrodynamics algorithm for dynamic fracture
用于动态断裂的新平滑粒子流体动力学算法的开发
  • 批准号:
    2887693
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Studentship
The interaction of waves with seaweed farms: wave attenuation and intra-farm hydrodynamics
波浪与海藻养殖场的相互作用:波浪衰减和养殖场内的流体动力学
  • 批准号:
    2888992
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了