SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems

SaTC:核心:前沿:协作:机器学习系统的端到端可信度

基本信息

  • 批准号:
    1804648
  • 负责人:
  • 金额:
    $ 69.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This frontier project establishes the Center for Trustworthy Machine Learning (CTML), a large-scale, multi-institution, multi-disciplinary effort whose goal is to develop scientific understanding of the risks inherent to machine learning, and to develop the tools, metrics, and methods to manage and mitigate them. The center is led by a cross-disciplinary team developing unified theory, algorithms and empirical methods within complex and ever-evolving ML approaches, application domains, and environments. The science and arsenal of defensive techniques emerging within the center will provide the basis for building future systems in a more trustworthy and secure manner, as well as fostering a long term community of research within this essential domain of technology. The center has a number of outreach efforts, including a massive open online course (MOOC) on this topic, an annual conference, and broad-based educational initiatives. The investigators continue their ongoing efforts at broadening participation in computing via a joint summer school on trustworthy ML aimed at underrepresented groups, and by engaging in activities for high school students across the country via a sequence of webinars advertised through the She++ network and other organizations.The center focuses on three interconnected and parallel investigative directions that represent the different classes of attacks attacking ML systems: inference attacks, training attacks, and abuses of ML. The first direction explores inference time security, namely methods to defend a trained model from adversarial inputs. This effort emphasizes developing formally grounded measurements of robustness against adversarial examples (defenses), as well as understanding the limits and costs of attacks. The second research direction aims to develop rigorously grounded measures of robustness to attacks that corrupt the training data and new training methods that are robust to adversarial manipulation. The final direction tackles the general security implications of sophisticated ML algorithms including the potential abuses of generative ML models, such as models that generate (fake) content, as well as data mechanisms to prevent the theft of a machine learning model by an adversary who interacts with the model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个边界项目建立了值得信赖的机器学习中心(CTML),这是一个大规模,多机构,多学科的努力,其目标是对机器学习固有的风险发展科学理解,并开发工具,指标和方法来管理和缓解它们。 该中心由一个跨学科团队领导,在复杂且不断发展的ML方法,应用领域和环境中开发统一理论,算法和经验方法。中心内出现的防御技术的科学和武器库将为以更可信赖和安全的方式构建未来系统,并在这一基本技术领域内建立长期的研究社区。该中心有许多外展工作,包括有关此主题的大规模开放在线课程(MOOC),年度会议和基于广泛的教育计划。调查人员继续进行持续的努力,以通过一所信任的ML旨在扩大夏季学校的参与计算,旨在旨在代表性不足的群体,并通过通过SHE ++网络和其他组织进行的一系列网络研讨会为全国各地的高中生进行活动,该中心侧重于三个互联和平行的攻击攻击攻击的攻击,攻击攻击的攻击性ML攻击,攻击攻击的攻击效果: ML。 第一个方向探讨了推理时间安全性,即捍卫训练有素的模型免受对抗输入的方法。这项努力强调了针对对抗性例子(防御)的鲁棒性正式衡量,并了解攻击的限制和成本。第二个研究方向旨在制定严格扎根的鲁棒性衡量标准,以破坏训练数据和对对抗性操纵的新训练方法的攻击。 最终方向解决了复杂的ML算法的一般安全含义,包括生成ML模型的潜在滥用,例如产生(假)内容的模型,以及防止与该模型互动的对手盗窃机器学习模型的数据机制,这反映了NSF的法定任务和经过评估的范围,这是通过评估的范围来进行的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Understanding Limitations of Pixel Discretization Against Adversarial Attacks
Overfitting, robustness, and malicious algorithms: A study of potential causes of privacy risk in machine learning
  • DOI:
    10.3233/jcs-191362
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel Yeom;Irene Giacomelli;Alan Menaged;Matt Fredrikson;S. Jha
  • 通讯作者:
    Samuel Yeom;Irene Giacomelli;Alan Menaged;Matt Fredrikson;S. Jha
Machine learning and logic: a new frontier in artificial intelligence
  • DOI:
    10.1007/s10703-023-00430-1
  • 发表时间:
    2023-06-14
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Ganesh,Vijay;Seshia,Sanjit A. A.;Jha,Somesh
  • 通讯作者:
    Jha,Somesh
Semantic Adversarial Deep Learning
  • DOI:
    10.1109/mdat.2020.2968274
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    2
  • 作者:
    S. Seshia;S. Jha;T. Dreossi
  • 通讯作者:
    S. Seshia;S. Jha;T. Dreossi
Towards Effective Differential Privacy Communication for Users’ Data Sharing Decision and Comprehension
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Somesh Jha其他文献

Adaptation with Self-Evaluation to Improve Selective Prediction in LLMs
适应自我评估以提高法学硕士的选择性预测
  • DOI:
    10.48550/arxiv.2310.11689
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiefeng Chen;Jinsung Yoon;Sayna Ebrahimi;Sercan Ö. Arik;Tomas Pfister;Somesh Jha
  • 通讯作者:
    Somesh Jha
Bilevel Relations and Their Applications to Data Insights
双层关系及其在数据洞察中的应用
  • DOI:
    10.48550/arxiv.2311.04824
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xi Wu;Xiangyao Yu;Shaleen Deep;Ahmed Mahmood;Uyeong Jang;Stratis Viglas;Somesh Jha;J. Cieslewicz;Jeffrey F. Naughton
  • 通讯作者:
    Jeffrey F. Naughton
Securing the Future of GenAI: Policy and Technology
确保 GenAI 的未来:政策和技术
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mihai Christodorescu;Google Ryan;Craven;S. Feizi;Neil Gong;Mia Hoffmann;Somesh Jha;Zhengyuan Jiang;Mehrdad Saberi Kamarposhti;John Mitchell;Jessica Newman;Emelia Probasco;Yanjun Qi;Khawaja Shams;Google Matthew;Turek
  • 通讯作者:
    Turek
rideApp RideSharing Application smsApp SMS Application mapApp Map Application SearchActivity MsgActivity action : VIEW dataScheme : geo action
rideApp 共乘应用程序 smsApp 短信应用程序 mapApp 地图应用程序 SearchActivity MsgActivity 操作:查看数据方案:地理操作
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinman Zhao;Vaibhav Rastogi;Somesh Jha;Damien Octeau
  • 通讯作者:
    Damien Octeau

Somesh Jha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Somesh Jha', 18)}}的其他基金

SaTC: CORE: Medium: Collaborative: User-Centered Deployment of Differential Privacy
SaTC:核心:媒介:协作:以用户为中心的差异隐私部署
  • 批准号:
    1931364
  • 财政年份:
    2020
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Standard Grant
FMitF: Collaborative Research: Formal Methods for Machine Learning System Design
FMITF:协作研究:机器学习系统设计的形式化方法
  • 批准号:
    1836978
  • 财政年份:
    2018
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Scaling and Prioritizing Market-Sized Application Analysis
TWC:媒介:协作:扩展和优先考虑市场规模的应用程序分析
  • 批准号:
    1563831
  • 财政年份:
    2016
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Continuing Grant
TWC: Phase: Medium: Collaborative Proposal: Understanding and Exploiting Parallelism in Deep Packet Inspection on Concurrent Architectures
TWC:阶段:中:协作提案:理解和利用并发架构深度数据包检查中的并行性
  • 批准号:
    1228782
  • 财政年份:
    2012
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Extending Smart-Phone Application Analysis
TWC:媒介:协作:扩展智能手机应用程序分析
  • 批准号:
    1228620
  • 财政年份:
    2012
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Standard Grant
TC: Medium: Collaborative Research: Building Trustworthy Applications for Mobile Devices
TC:媒介:协作研究:为移动设备构建值得信赖的应用程序
  • 批准号:
    1064944
  • 财政年份:
    2011
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Standard Grant
TC:Medium:Collaborative Research:Techniques to Retrofit Legacy Code with Security
TC:中:协作研究:安全改造遗留代码的技术
  • 批准号:
    0904831
  • 财政年份:
    2009
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Standard Grant
Collaborative Research: CT-T: Towards Behavior-Based Malware Detection
合作研究:CT-T:迈向基于行为的恶意软件检测
  • 批准号:
    0627501
  • 财政年份:
    2007
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Continuing Grant
CT-ISG: Alternate representation of NIDS/NIPS signatures for fast matching
CT-ISG:NIDS/NIPS 签名的替代表示形式,用于快速匹配
  • 批准号:
    0716538
  • 财政年份:
    2007
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Continuing Grant
CAREER: Combating Malicious Behavior in Commodity Software
职业:打击商品软件中的恶意行为
  • 批准号:
    0448476
  • 财政年份:
    2005
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于核受体靶标垂钓的活性有机污染物高通量筛选方法的研究及应用
  • 批准号:
    22306197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
镁原子诱导异核双金属催化剂的制备及其氧还原性能研究
  • 批准号:
    22305054
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双单亲遗传贝类线粒体与核氧化磷酸化基因动态协作调控机制
  • 批准号:
    32302965
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
臂旁核-丘脑室旁核神经环路调控感觉刺激诱发觉醒的作用及机制研究
  • 批准号:
    82371493
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
伏隔核-腹侧被盖区-基底外侧杏仁核神经环路在小鼠氯胺酮成瘾中的机制研究
  • 批准号:
    82371900
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    2343611
  • 财政年份:
    2022
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1805310
  • 财政年份:
    2018
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1804829
  • 财政年份:
    2018
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1804794
  • 财政年份:
    2018
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
  • 批准号:
    1804222
  • 财政年份:
    2018
  • 资助金额:
    $ 69.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了