FMitF: Collaborative Research: Formal Methods for Machine Learning System Design
FMITF:协作研究:机器学习系统设计的形式化方法
基本信息
- 批准号:1836978
- 负责人:
- 金额:$ 40.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning (ML) algorithms, fueled by massive amounts of data, are increasingly being utilized in several critical domains, including health care, finance, and transportation. Models produced by ML algorithms, for example deep neural networks, are being deployed in these domains where trustworthiness is a big concern. It has become clear that, for such domains, a high degree of assurance is required regarding the safe and correct operation of ML-based systems. This project seeks to provide a systematic framework for the design of ML systems based on formal methods. The project seeks to review and improve almost every aspect of the design flow of ML systems, including data-set design, learning algorithm selection, training of ML models, analysis and verification, and deployment. The theory and ideas generated during the project will be implemented in a new software toolkit for the design of ML systems in the context of cyber-physical systems.The project focuses on cyber-physical systems (CPS), which is a rich domain to apply formal methods principles. Moreover, the research ideas from this project can be readily applied to other contexts. A key aspect of this research is the use of a semantic approach to the design and analysis of ML systems, where the semantics of the target application and a formal specification for the full system, comprising the ML component and other components, are cornerstones of the design methodology. The project employs a range of formal methods, including satisfiability solvers, simulation-based verification, model checking, specification analysis, and synthesis to improve all stages of the ML design flow. Formal techniques are also used for the tuning of hyper-parameters and other aspects of the training process, to aid in debugging misclassifications produced by ML models, and to monitor ML systems at run time and ensure that outputs from ML models are used in a manner that ensures safe operation at all times.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)算法在大量数据的推动下,越来越多地应用于几个关键领域,包括医疗保健、金融和交通。机器学习算法生成的模型,例如深度神经网络,正被部署在这些非常关注可信度的领域。很明显,对于这些领域,基于ml的系统的安全和正确操作需要高度的保证。该项目旨在为基于形式化方法的机器学习系统设计提供一个系统框架。该项目旨在审查和改进机器学习系统设计流程的几乎每个方面,包括数据集设计、学习算法选择、机器学习模型的训练、分析和验证以及部署。项目期间产生的理论和想法将在一个新的软件工具包中实施,用于在网络物理系统的背景下设计机器学习系统。该项目重点研究网络物理系统(CPS),这是一个应用形式化方法原理的丰富领域。此外,本项目的研究思路可以很容易地应用于其他情境。本研究的一个关键方面是使用语义方法来设计和分析机器学习系统,其中目标应用程序的语义和完整系统的正式规范,包括机器学习组件和其他组件,是设计方法的基石。该项目采用了一系列正式方法,包括满意度求解器、基于仿真的验证、模型检查、规范分析和综合,以改进机器学习设计流程的所有阶段。正式技术也用于调整超参数和训练过程的其他方面,以帮助调试ML模型产生的错误分类,并在运行时监控ML系统,并确保ML模型的输出以确保始终安全运行的方式使用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Game redesign in no-regret game playing
游戏重新设计,让游戏不后悔
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ma, Yuzhe;Wu, Young;Zhu, Xiaojin
- 通讯作者:Zhu, Xiaojin
Towards Understanding Limitations of Pixel Discretization Against Adversarial Attacks
- DOI:10.1109/eurosp.2019.00042
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Jiefeng Chen;Xi Wu;Vaibhav Rastogi;Yingyu Liang;S. Jha
- 通讯作者:Jiefeng Chen;Xi Wu;Vaibhav Rastogi;Yingyu Liang;S. Jha
Policy Teaching via Environment Poisoning: Training-time Adversarial Attacks against Reinforcement Learning
- DOI:
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Amin Rakhsha;Goran Radanovic;R. Devidze;Xiaojin Zhu;A. Singla
- 通讯作者:Amin Rakhsha;Goran Radanovic;R. Devidze;Xiaojin Zhu;A. Singla
The Sample Complexity of Teaching by Reinforcement on Q-Learning
- DOI:10.1609/aaai.v35i12.17306
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Xuezhou Zhang;S. Bharti;Yuzhe Ma;A. Singla;Xiaojin Zhu
- 通讯作者:Xuezhou Zhang;S. Bharti;Yuzhe Ma;A. Singla;Xiaojin Zhu
Corruption-Robust Offline Reinforcement Learning
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Xuezhou Zhang;Yiding Chen;Jerry Zhu;Wen Sun
- 通讯作者:Xuezhou Zhang;Yiding Chen;Jerry Zhu;Wen Sun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Somesh Jha其他文献
2018 CAV award
- DOI:
10.1007/s10703-021-00375-3 - 发表时间:
2021-06-28 - 期刊:
- 影响因子:0.800
- 作者:
Kim G. Larsen;Natarajan Shankar;Pierre Wolper;Somesh Jha - 通讯作者:
Somesh Jha
Adaptation with Self-Evaluation to Improve Selective Prediction in LLMs
适应自我评估以提高法学硕士的选择性预测
- DOI:
10.48550/arxiv.2310.11689 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jiefeng Chen;Jinsung Yoon;Sayna Ebrahimi;Sercan Ö. Arik;Tomas Pfister;Somesh Jha - 通讯作者:
Somesh Jha
Bilevel Relations and Their Applications to Data Insights
双层关系及其在数据洞察中的应用
- DOI:
10.48550/arxiv.2311.04824 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xi Wu;Xiangyao Yu;Shaleen Deep;Ahmed Mahmood;Uyeong Jang;Stratis Viglas;Somesh Jha;J. Cieslewicz;Jeffrey F. Naughton - 通讯作者:
Jeffrey F. Naughton
Securing the Future of GenAI: Policy and Technology
确保 GenAI 的未来:政策和技术
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mihai Christodorescu;Google Ryan;Craven;S. Feizi;Neil Gong;Mia Hoffmann;Somesh Jha;Zhengyuan Jiang;Mehrdad Saberi Kamarposhti;John Mitchell;Jessica Newman;Emelia Probasco;Yanjun Qi;Khawaja Shams;Google Matthew;Turek - 通讯作者:
Turek
rideApp RideSharing Application smsApp SMS Application mapApp Map Application SearchActivity MsgActivity action : VIEW dataScheme : geo action
rideApp 共乘应用程序 smsApp 短信应用程序 mapApp 地图应用程序 SearchActivity MsgActivity 操作:查看数据方案:地理操作
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jinman Zhao;Vaibhav Rastogi;Somesh Jha;Damien Octeau - 通讯作者:
Damien Octeau
Somesh Jha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Somesh Jha', 18)}}的其他基金
SaTC: CORE: Medium: Collaborative: User-Centered Deployment of Differential Privacy
SaTC:核心:媒介:协作:以用户为中心的差异隐私部署
- 批准号:
1931364 - 财政年份:2020
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
- 批准号:
1804648 - 财政年份:2018
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: Scaling and Prioritizing Market-Sized Application Analysis
TWC:媒介:协作:扩展和优先考虑市场规模的应用程序分析
- 批准号:
1563831 - 财政年份:2016
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
TWC: Phase: Medium: Collaborative Proposal: Understanding and Exploiting Parallelism in Deep Packet Inspection on Concurrent Architectures
TWC:阶段:中:协作提案:理解和利用并发架构深度数据包检查中的并行性
- 批准号:
1228782 - 财政年份:2012
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Extending Smart-Phone Application Analysis
TWC:媒介:协作:扩展智能手机应用程序分析
- 批准号:
1228620 - 财政年份:2012
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
TC: Medium: Collaborative Research: Building Trustworthy Applications for Mobile Devices
TC:媒介:协作研究:为移动设备构建值得信赖的应用程序
- 批准号:
1064944 - 财政年份:2011
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
TC:Medium:Collaborative Research:Techniques to Retrofit Legacy Code with Security
TC:中:协作研究:安全改造遗留代码的技术
- 批准号:
0904831 - 财政年份:2009
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: CT-T: Towards Behavior-Based Malware Detection
合作研究:CT-T:迈向基于行为的恶意软件检测
- 批准号:
0627501 - 财政年份:2007
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
CT-ISG: Alternate representation of NIDS/NIPS signatures for fast matching
CT-ISG:NIDS/NIPS 签名的替代表示形式,用于快速匹配
- 批准号:
0716538 - 财政年份:2007
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
CAREER: Combating Malicious Behavior in Commodity Software
职业:打击商品软件中的恶意行为
- 批准号:
0448476 - 财政年份:2005
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
相似海外基金
FMitF: Collaborative Research: RedLeaf: Verified Operating Systems in Rust
FMITF:协作研究:RedLeaf:经过验证的 Rust 操作系统
- 批准号:
2313411 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Game Theoretic Updates for Network and Cloud Functions
合作研究:FMitF:第一轨:网络和云功能的博弈论更新
- 批准号:
2318970 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Knitting Semantics
合作研究:FMitF:第一轨:针织语义
- 批准号:
2319182 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
- 批准号:
2319242 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
- 批准号:
2349461 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
- 批准号:
2319243 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
- 批准号:
2319400 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
- 批准号:
2319399 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Simplifying End-to-End Verification of High-Performance Distributed Systems
合作研究:FMitF:第一轨:简化高性能分布式系统的端到端验证
- 批准号:
2318954 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: The Phlox framework for verifying a high-performance distributed database
合作研究:FMitF:第一轨:用于验证高性能分布式数据库的 Phlox 框架
- 批准号:
2319167 - 财政年份:2023
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant














{{item.name}}会员




